ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 335-353 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surfacewater acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R 2=0.84). The best two-variable model (adjustedR 2=0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl− concentrations in treatment solutions had a stronger effect (p=0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p=0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of longterm cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: forest disturbance ; forest ecosystem ; Potassium biogeochemistry ; soil chemistry ; stream chemistry ; wet and dry deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A synthesis of the biogeochemistry of K was conducted during 1963–1992 in the reference and human-manipulated watershed-ecosystems of the Hubbard Brook Experimental Forest (HBEF), NH. Results showed that during the first two years of the study (1963–65), which coincided with a drought period, the reference watershed was a net sink for atmospheric inputs of K. During the remaining years, this watershed has been a net source of K for downstream ecosystems. There have been long-term declines in volume-weighted concentration and flux of K at the HBEF; however, this pattern appears to be controlled by the relatively large inputs during the initial drought years. Net ecosystem loss (atmospheric deposition minus stream outflow) showed an increasing trend of net loss, peaking during the mid-1970s and declining thereafter. This pattern of net K loss coincides with trends in the drainage efflux of SO4 2− and NO3 −, indicating that concentrations of strong acid anions may be important controls of dissolved K loss from the site. There were no long-term trends in streamwater concentration or flux of K. A distinct pattern in pools and fluxes of K was evident based on biotic controls in the upper ecosystem strata (canopy, boles, forest floor) and abiotic controls in lower strata of the ecosystem (mineral soil, glacial till). This biological control was manifested through higher concentrations and fluxes of K in vegetation, aboveground litter, throughfall and forest floor pools and soil water in the northern hardwood vegetation within the lower reaches of the watershedecosystem, when compared with patterns in the high-elevation spruce-fir zone. Abiotic control mechanisms were evident through longitudinal variations in soil cation exchange capacity (related to soil organic matter) and soil/till depth, and temporal and disturbance-related variations in inputs of strong-acid anions. Marked differences in the K cycle were evident at the HBEF for the periods 1964–69 and 1987–92. These changes included decreases in biomass storage, net mineralization and throughfall fluxes and increased resorption in the latter period. These patterns seem to reflect an ecosystem response to decreasing rates of biomass accretion during the study. Clearcutting disturbance resulted in large losses of K in stream water and from the removal of harvest products. Stream losses occur from release from slash, decomposition of soil organic matter and displacement from cation exchange sites. Elevated concentrations of K persist in stream water for many years after clearcutting. Of the major elements, K shows the slowest recovery from clearcutting disturbance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 333-351 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surface-water acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R2 = 0.84). The best two-variable model (adjusted R2 = 0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl- concentrations in treatment solutions had a stronger effect (p = 0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p = 0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of long-term cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...