ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: compost ; fly ash ; lignite ; minesite reclamation ; sewage sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Due to a large reclamation (recultivation) demand in the Lusatian lignite mining district, efficient strategies for the rehabilitation of abandoned mine sites are needed. A field study was conducted for comparing the effects of three different fertilizer treatments (mineral fertilizer, sewage sludge and compost) on soil solution chemistry of both a lignite and pyrite containing spoil as well as a lignite and pyrite free spoil. The lignite and pyrite containing spoil was ameliorated with fly ash from a lignite power plant (17–21 t ha−1 CaO), whereas the lignite and pyrite free site received 7.5 t ha−1 CaO in form of limestone. Fertilizer application rates were: mineral fertilizer 120 N, 100 P and 80 K kg ha−1. 19 t ha−1 sewage sludge and 22 t ha−1 compost were applied. Soil solution was sampled in 20, 60 and 130 cm depth for the period of 16 months. Solution was collected every fortnight and analysed for pH, EC, Ca2+, Mg2+, K+, Na+, Fen+, Aln+, Mn2+, Zn2+, NO3 −, NH4 +, SO4 2−, Cl−, PO4 3−, Cinorg and DOC. Lignite and pyrite containing spoil differed clearly from lignite and pyrite free spoil regarding soil solution concentrations and composition. Acidity (H+) produced by pyrite oxidation led to an enhanced weathering of minerals and, therefore, to at least 10 fold higher soil solution concentrations compared to the lignite and pyrite free site. Major ions in solution of the lignite and pyrite containing site were Ca2+, Mg2+, Fen+, Aln+ and SO4 2−, whereas soil solution at the lignite and pyrite free site was dominated by Ca2+, Mg2+ and SO4 2−. At both sites application of mineral fertilizer led to an immediate but short term (about 1 month) increase of NO3 −, NH4 + and K+ concentrations in soil solution down to a depth of 130 cm. Application of sewage sludge caused a long term (about 16 months) increase of NO3 3 − in the topsoil, whereas NO3 − concentrations in the subsoil were significantly lower compared to the mineral fertilizer plot. Compost application resulted in a strong long-term increase of K+ in soil solution, whereas NO3 − concentrations did not increase. Concentrations of PO4 3− in soil solution depend on solution pH and were not correlated with any treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 128 (1990), S. 45-58 
    ISSN: 1573-5036
    Keywords: conifers ; fertilization ; magnesium ; new type forest damage ; nitrogen saturation ; nutritional status ; potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract New types of forest damage associated with Mg (and K) deficiency can be corrected by proper fertilization using fast release Mg (and K) fertilizers or Mg limestone. Sufficient Mg and K supply provided by former fertilizer applications inhibited the appearance of typical deficiency symptoms in areas where unfertilized control trees are now characterized by yellowing. In these areas N input rates vary appreciably. Addition of N fertilizers, particularly in the form of NH4-N, can induce nutrient imbalances as was demonstrated for Mg and K. From these disorders relative growth reductions may result. However, sustained negative effects will probably only occur when large doses are applied or when atmospheric N input rates are high. Increased N uptake due to N fertilization indicated that the investigated sites were not saturated with N. Needle analysis is a very simple as well as valuable tool to characterize the nutritional status of forest tress and stands when it is carried out correctly. Nutrient ratios should receive the attention they deserve, rather than concentrate exclusively on the evaluation of absolute nutrient contents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: amelioration ; compost ; ground beetles ; mine spoil ; revegetation ; sewage sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract On a study site in the Lusatian lignite mining region (Germany), sandy mine spoil was ameliorated with either sewage sludge, compost or mineral fertilizer. Plots were sown with the grass Secale multicaule and planted with pine seedlings except for a control that was not meliorated and not revegetated. Pitfall catches of ground beetles in 1996/97 yielded high numbers of species and individuals directly after revegetation. The dominant beetles were xerophilic species, known to prefer open sandy sites. Catches in different plots were positively correlated with the amount of vegetation cover and declined as follows: amelioration with sewage sludge 〉 compost 〉 mineral fertilizer 〉 untreated control. Even beetles characteristic of open sandy sites showed a distinct preference for plots with high vegetation cover treated with organic waste. For the dominant species, an attraction to shelter and a more balanced, humid microclimate is assumed. A year-to-year comparison showed an increase in beetles typical of dry grasslands and ruderal sites in the second year, while characteristic species of open sandy sites decreased. Application of organic waste combined with revegetation led to an immediate increase in beetle numbers. In the long term, revegetation would be expected to reduce suitable habitats for endangered ground beetles which prefer open sites with poor sandy soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: fertilization ; forest decline ; magnesium deficiency ; Norway spruce
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Amelioration of degraded forest ecosystems on acidic substrates showing the new type of forest decline is a major goal of forest management. A number of experiments show positive effects of Mg-application to systems suffering from Mg-deficiencies. The current paper compares experiments conducted in the Austrian part of the Bohemian Massif, where both effects on soil solution chemistry and effects on plant nutrition, vitality and growth were investigated. It turned out that any type of Mg-source is able to improve Mg-nutrition of trees; both a neutral salt like KIESERITE as well as alkaline reacting magnesite and dolomite derived materials. A positive reaction of vitality and growth could however only be induced with dolomitic lime or magnesite. Using mineral NPK fertilizers, even with high Mg-content, induced Mg-deficiencies and led to nutritional imbalances. In addition significant NO3 --leaching occured. On the other hand an organic slow release fertilizer (BACTOSOL*) amended with magnesite derived fertilizers (BIOMAG**) led to balanced nutrition and a fast recovery of tree health status, as judged by crown transparency, vitality index and growth rates. In both cases, when either magnesite derived compounds or combinations with the organic slow release fertilizer were applied, NO3 --leaching occured only during the first three years after fertilization. The leaching rates declined afterwards to values comparable to unfertilized plots, while Mg-content of the soil solution could be elevated compared to the CONTROL, showing the sustainability of proper fertilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...