ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 124 (1986), S. 3-30 
    ISSN: 1420-9136
    Keywords: Structural Geology ; faults ; S. E. Spain ; experimental rock mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Fault rocks formed in phyllosilicate-bearing rocks formed over a wide range of environmental conditions within the Earth's crust are characterised by similar structural and microstructural features. The most striking of these are (a) P foliation, defined by the preferred alignment of phyllosilicates in a plane oblique to the direction of shear and (b) small-scale shear zones either parallel to the shear direction (Y shears) or oblique to the direction of shear but with the opposite sense of obliquity relative to the P foliation (Riedel shears, R1). The minor shear zones have the same sense of displacement as the host shear zone. The occurrence of these and other structures in clay-rich fault gouges from exceptionally well-exposed fault zones in southeastern Spain is described. The pervasive development of these flow structures throughout large volumes of fault gouge permits fault-displacement vectors to be inferred. For the region studied the movement pictures is relatively simple and is superposed on a complex network of variably oriented fault zones. The naturally produced fault-gouge structures are compared with fault gouges produced experimentally by shearing kaolinite-quartz mixtures between intact blocks over a wide range of experimental conditions. Good correspondence between their respective microstructural features was observed. Finally, attention is drawn to the fact that natural clay-bearing fault gouges are the products of deformation accompanied by very low-grade retrogressive metamorphism, and that part of the micro-structure of these rocks may be ascribed to crystallization under stress. Microstructures are described that are from long-duration experimental runs, (5 months at high temperature and in the presence of water) which go some way towards simulating these effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...