ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 551.489  (1)
  • Sustainability Science  (1)
  • event type  (1)
Sammlung
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-07-03
    Beschreibung: Mixture of runoff generation processes poses a challenge for predicting upper flood quantiles. We examined transformations of generation processes from all identifiable runoff events to frequent and upper tail floods for a large set of mesoscale catchments and observed a substantial change of the dominant processes. Two trajectories of transformation were detected. In regions where floods occur almost exclusively in winter the dominance of processes related to snowmelt consistently increases from small events to frequent and upper tail floods. In catchments characterized by frequent winter‐spring floods and occasional summer‐autumn flood events triggered by rare meteorological phenomena (e.g., Vb cyclones), processes that dominate upper tails are not adequately represented in the sample of frequent floods. Predictions of extremes and projections of flood changes might remain highly uncertain in the latter cases.
    Beschreibung: Plain Language Summary: Prediction of floods remains a challenging task for the engineering practice. Floods triggered by different physical mechanisms have contrasting statistical attributes. Mixture of these processes hinders reliable prediction of the largest floods. In this study we classified a large number of streamflow events observed in a wide range of German river basins according to their generation processes. We analyzed changes in the frequency of occurrence of different generation processes, from the smallest identifiable runoff events to annual floods to rarer events corresponding to larger river flows. Interestingly, for some river basins certain processes tend to consistently increase their frequency from small streamflow events to common and larger floods. In other cases, we observed an opposite tendency. Certain processes become less important for the generation of annual floods compared to small streamflow events but then dominate generation of the largest floods. This has important implications for our ability to predict extreme floods and their possible changes.
    Beschreibung: Key Points: We analyzed transformation of processes from small runoff events to larger floods using a process‐based framework for event characterization. A substantial transformation of the frequency of processes from small runoff events to frequent and upper tail floods is observed. Differences in trajectories of process transformation among catchments suggest regionally variable predictability of extremes.
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: Helmholtz‐Zentrum für Umweltforschung (UFZ)
    Schlagwort(e): 551.489 ; flood origins ; event classification ; ordinary events ; annual floods ; upper tail floods ; process transformation
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-10-14
    Beschreibung: This study proposes a new process-based framework to characterize and classify runoff events of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless indicators that characterize space–time dynamics of precipitation events and their spatial interaction with antecedent catchment states, described as snow cover, distribution of frozen soils, and soil moisture content. A rigorous uncertainty analysis showed that the developed indicators are robust and regionally consistent. Relying on covariance- and ratio-based indicators leads to reduced classification uncertainty compared to commonly used (event-based) indicators based on absolute values of metrics such as duration, volume, and intensity of precipitation events. The event typology derived from the proposed framework is able to stratify events that exhibit distinct hydrograph dynamics even if streamflow is not directly used for classification. The derived typology is therefore able to capture first-order controls of event runoff response in a wide variety of catchments. Application of this typology to about 180,000 runoff events observed in 392 German catchments revealed six distinct regions with homogeneous event type frequency that match well regions with similar behavior in terms of runoff response identified in Germany. The detected seasonal pattern of event type occurrence is regionally consistent and agrees well with the seasonality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative analyses of regional differences and similarities of runoff generation processes at catchment scale and their possible spatial and temporal evolution.
    Schlagwort(e): 551.48 ; event classification ; event type ; rainfall-runoff events ; event typology ; event characteristics ; runoff generation mechanisms
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-08-07
    Beschreibung: Landscape and climate alterations foreshadow global-scale shifts of river flow regimes. However, a theory that identifies the range of foreseen impacts on streamflows resulting from inhomogeneous forcings and sensitivity gradients across diverse regimes is lacking. Here, we derive a measurable index embedding climate and landscape attributes (the ratio of the...
    Schlagwort(e): Sustainability Science
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...