ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 6 (1994), S. 105-112 
    ISSN: 1573-5176
    Keywords: cyanobacteria ; red algae ; phycobiliproteins ; bilins ; energy transfer ; fluorescent tags
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phycobiliproteins are brilliantly colored, highly fluorescent components of the photosynthetic light-harvesting antenna complexes of cyanobacteria (blue-green algae), red algae and cryptomonads. These proteins carry covalently attached linear tetrapyrrole pigments related structurally to biliverdin. Phycobiliproteins, purified from certain organisms, are isolated as either trimers, (αβ)3, of approximatelyM r 110–120×103 (e.g., allophycocyanins), or hexamers, (αβ)6γ, of aboutM r 250×103 (certain phycoerythrins). Three phycobiliproteins R-phycoerythrin, B-phycoerythrin, and allophycocyanin serve as valuable fluorescent tags with numerous applications in flow cytometry, fluorescence activated cell sorting, histochemistry and, to a limited degree, in immunoassay and detection of reactive oxygen species. These applications exploit the unique physical and spectroscopic properties of phycobiliproteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 163-170 
    ISSN: 1573-5079
    Keywords: energy transfer ; light-harvesting pigments ; linear tetrapyrrole ; photosynthetic antennae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two crytophycean phycocyanins (Cr-PCs), Hemiselmis strain HP9001 Cr-PC 612 and Falcomonas daucoides Cr-PC 69 were purified and characterized with respect to bilin numbers, types and locations. Each biliprotein carried one bilin on the α subunit and three on the β subunit. Cr-PC 612 carried phycocyanobilin at α-Cys-18, β-Cys-82, and β-Cys-158, and a doubly-linked 15,16-dihydrobiliverdin at β-DiCys-50,61. Cr-PC 569 carried phycocyanobilin at α-Cys-18 and β-Cys-82, a singly-linked Bilin 584 at β-Cys-158, and a doubly-linked Bilin 584 at β-DiCys-50,61. This work, in conjunction with earlier studies on Cr-PE 545, Cr-PE 555, Cr-PE 566, and Cr-PC 645, shows that there is no conserved location for the bilin with longest wavelength visible absorption band among these proteins, and, consequently, that there is no conserved energy transfer pathway common to all native cryptophycean biliproteins. Only phycocyanobilin or phycoerythrobilin is found at β-Cys-82; there is greater bilin variability at the other three attachment sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 22 (1983), S. 1-14 
    ISSN: 0730-2312
    Keywords: cyanobacteria ; phycobilisome substructure ; allophycocyanin complexes ; biliproteins ; energy transfer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The tricylindrical core of Synechocystis 6701 phycobilisomes is made up of four types of allophycocyanin-containing complexes: A, (αAP βAP)3; B, (αAP βAP)3 .10K; C, (α1APBα2APβ3AP).10K; D, (αAP βAP)2.18.5K.99K; where AP is allophycocyanin, APB is allophycocyanin B, and 10K, 18.5K, and 99K are polypeptides of 10,000, 18,500, and 99,000 daltons, respectively. The 18.5K polypeptide is a hitherto unrecognized biliprotein subunit with a single phycocyanobilin prosthetic group. The tricylindrical core is made up of 12 subcomplexes in the molar ratio of A:B:C:D: of 4:4:2:2. Complexes C and D act as terminal energy acceptors. From these results and previous analysis of the bicylindrical core of Synechococcus 6301 phycobilisomes [14,15] it is proposed that the two cylinders of the Synechocystis 6701 core, proximal to the thylakoid membrane, each have the composition ABCD, and that the distal cylinder has the composition A2B2.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...