ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • energy metabolism  (2)
  • OPC-stimulation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 51 (1993), S. 190-197 
    ISSN: 0730-2312
    Keywords: energy metabolism ; glycolysis ; differentiation stage ; alkaline phosphatase ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone marrow stromal cells give rise to osteoprogenitor cell (OPC) colonies, with characteristic mineralized bone nodules in vitro. During differentiation, OPCs in the culture are surrounded by heterogeneous populations of various cell lineages and by different OPC differentiation stages. In the present study, attempts were made to increase the homogeneity of OPCs in culture. The reliance on energy metabolism restricted to glycolysis, which is specific to the premineralizing skeletal cells, was tested as a selectable marker for cells in this stage. Day 12 alkaline phosphatase (ALP) and day 20-21 calcium precipitates were used as early and late OPC differentiation markers. Malonate, a competitive inhibitor of succinate dehydrogenase, was added to the OPC stimulation medium, to interfere with the Krebs cycle-dependent energy metabolism operating in most of the stromal cells. OPCs that entered the stage of energy metabolism restricted to glycolysis were expected to become malonate resistant. Malonate showed dose and time dependence, 10 mM malonate added on day 3, decreased day 12 ALP activity/well to the lowest level. Variations in time and length of exposure to malonate used during the first 12 days of differentiation showed an inverse correlation between specific ALP activity and cell yield. Malonate-treated variations of specific ALP and of cell yield indices were up to 30- to 40-fold larger than variations within day 21 calcium precipitates. Thus, calcifying cells were almost unchanged relatively to noncalcifying cells. These results indicate that malonate-resistant cells are mostly selected, rather than induced, to differentiate by malonate. The results also show that stromal derived OPCs undergo a similar biochemical stage as in chondrocytes. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: energy metabolism ; mineralization ; OPC-stimulation ; dexamethasone ; mitochondrial membrane ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone marrow stromal cells contain colony forming cells with the potential to differentiate into osteoprogenitor (OPC) cells. OPC-stimulation medium, containing dexamethasone, ascorbate, and β-glycerophosphate is widely used to recruit OPCs in culture. Cultures were incubated 24 h with rhodamine 123 (Rho), on different days, to examine the effect of the OPC-stimulation medium on the mitochondrial membrane potential of stromal cells. Cultures grown in both ordinary medium (DMEM with 15% FCS) and OPC-stimulation medium showed 2 Rho retention peaks on days 3-4 and 10-11. Between days 5 and 10 there was a drop in Rho retention/cell. OPC-stimulation medium increased Rho retention by at least twice the amount relative to ordinary medium, and has quadrupled it on day 7. Incubation with Rho concentrations above 5.0 μg/ml inhibited the portion of increased Rho retention which was contributed by the OPC-stimulation medium. Prolonged exposure to 0.1, 1.0, and 10.0 μg/ml Rho for 12 days only slightly increased day 12 ALP activity/cell, had no effect on day-21 mineralization and only the high dose, 10.0 μg/ml, doubled stromal cell proliferation. Under 24 h incubation Rho concentrations of 1.0 μg/ml and below can serve as a marker for mitochondrial membrane potential in differentiating stromal cells. The results indicate that under both culture conditions stromal cell mitochondria undergo cycles of high and low membrane potential states and that the OPC-stimulation medium constantly maintains an elevated membrane potential relative to ordinary medium.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...