ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • differentiation  (12)
  • osteoblast differentiation  (5)
Collection
Publisher
Years
  • 1
    ISSN: 1573-4978
    Keywords: chromatin structure ; differentiation ; nuclear matrix ; osteoblast ; transcription ; vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1–3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 247-265 
    ISSN: 0197-8462
    Keywords: proliferation ; differentiation ; cell phenotype ; tissue culture ; molecular biology ; cell biology ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The potential biological effects of electric and/or magnetic fields on cells and tissues must be addressed systematically within a context of perturbations in cell cycle control. Such studies should not be pursued in an isolated manner but as a component of the fundamental relationship between proliferation and differentiation, the multi-step process by which structural and functional properties of specialized cells, tissues, and organs progressively develop. It is necessary to quantitatively establish the influence of electric and magnetic fields on the integrated signalling mechanisms which transduce regulatory information for 1) control of the proliferative process and 2) down-regulation of proliferation associated with the initiation of gene expression that mediates the development and maintenance of phenotypic properties characteristic of differentiated cells. We will present an overview of our current understanding of regulatory mechanisms that control proliferation and cell specialization in normal diploid cells with emphasis on rate limiting steps that may be the basis for biological perturbations by electric and magnetic fields. Addressing such questions in normal diploid cells is essential since the loss of growth control in transformed and tumor cells is accompanied by an abrogation of developmental regulatory mechanisms that are functionally coupled to proliferation. 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 184-196 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; transcription ; mRNA stability ; histone ; differentiation ; bone development ; osteoblast ; promoter factors ; collagen ; osteosarcoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of dexamethasone on expression of the osteocalcin gene which encodes the most abundant non-collagenous and only reported bone-specific protein was examined in ROS 17/2.8 osteosarcoma cells which express a broad spectrum of genes related to bone formation. Consistent with previous reports, quantitation of cellular osteocalcin mRNA levels by Northern blot analysis, osteocalcin gene transcription by activity of the osteocalcin gene promoter fused to a chloramphenicol acetyl-transferase (CAT) mRNA coding sequence following transfection into ROS 17/2.8 cells, and osteocalcin biosynthesis by radioimmunoassay indicate that dexamethasone in a concentration range of 10-6 to 10-9 M only modestly modifies basal levels of osteocalcin gene expression. However, dexamethasone significantly inhibits these parameters of the vitamin D-induced upregulation of osteocalcin gene expression in both proliferating and in confluent ROS 17/2.8 cells. In this study, we observed that the extent to which abrogation of the vitamin D response occurs is dependent on basal levels of osteocalcin gene expression as reflected by a complete inhibition of the vitamin D-induced upregulation in a ROS 17/2.8K subline with low basal expression and only a partial reduction of the vitamin D stimulation in a ROS 17/2.8C subline with eightfold higher levels of basal expression. This effect of glucocorticoid appears to be at the transcriptional and post-transcriptional levels as demonstrated by a parallel decline in the cellular representation of osteocalcin mRNA, osteocalcin gene promoter activity, and osteocalcin biosynthesis. The complexity of the glucocorticoid effect on vitamin D-mediated transcriptional properties of the osteocalcin gene is indicated by persistence of sequence-specific protein-DNA interactions at two principal osteocalcin gene promoter regulatory elements, the osteocalcin (CCAAT) box which modulates basal level of transcription, and the vitamin D responsive element, where vitamin D-mediated enhancement of osteocalcin gene transcription is controlled.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: osteocalcin ; osteopontin ; collagen ; c-fos ; oncogene ; histone ; fibronectin ; alkaline phosphatase ; collagenase ; steroid hormone ; growth control ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10 -7 M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGFβ was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assay to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the vitamin D3 effect on gene expression. Those genes which are upregulated by 1,25(OH)2D3 are transcribed at an increased rate by dexamethasone, while those genes which are inhibited by vitamin D3 remain inhibited in the presence of dexamethasone and D3. We propose that the glucocorticoid promote changes in gene expression involved in cell-cell and cell-extracellular matrix signaling mechanism that support the growth and differentiation of cells capable of osteoblast phenotype development and bone tissue-like organization, while inhibiting the growth of cells that cannot progress to the mature osteoblast phenotype in fetal rat calvarial cultures. © 1992 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: cell cycle control ; histone gene expression ; S-phase ; regulatory signals ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 55 (1994), S. 190-199 
    ISSN: 0730-2312
    Keywords: osteoclast ; osteocalcin ; bone marrow ; differentiation ; resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase-positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 49 (1992), S. 37-45 
    ISSN: 0730-2312
    Keywords: differentiation ; osteocalcin ; osteoblast ; vitamin D ; responsive element ; promoter elements ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vitamin D is a physiological regulator of gene transcription associated with control of a broad spectrum of biological processes that include but is not restricted to growth, differentiation and calcium-mediated homeostatic control. Transcriptional regulation is mediated by sequence-specific interactions of a 1,25(OH)2D3-vitamin D receptor-accessory factor complex with vitamin D responsive elements (VDRE) residing in the promoters of hormone responsive genes. Functioning primarily as a transcription enhancer, activity at the VDRE is controlled by diverse and integrated cellular signalling pathways acting synergistically and/or antagonistically with a series of basal regulatory elements and other hormone regulated sequences that are components of modularly organized vitamin D-responsive gene promoters. Molecular mechanisms that integrate the activities at promoter elements contributing to vitamin D-related transcriptional control include overlapping transcription factor binding domains within regulatory elements and cooperative activities at independent regulatory sequences that determine the level of vitamin D responsiveness.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 54 (1994), S. 231-238 
    ISSN: 0730-2312
    Keywords: bone ; osteocalcin ; alkaline phosphatase ; differentiation ; halogenated hydrocarbons ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent halogenated aromatic hydrocarbon, on the development of bone tissue-like organization in primary cultures of normal diploid calvarial-derived rat osteoblasts was examined. Initially, when placed in culture, these cells actively proliferate while expressing genes associated with biosynthesis of the bone extracellular matrix. Then, post-proliferatively, genes are expressed that render the osteoblast competent for extracellular matrix mineralization and maintenance of structural as well as functional properties of the mature bone-cell phenotype. Our results indicate that, in the presence of TCDD, proliferation of osteoblasts was not inhibited but post-confluent formation of multicellular nodules that develop bone tissue-like organization was dramatically suppressed. Consistent with TCDD-mediated abrogation of bone nodule formation, expression of alkaline phosphatase and osteocalcin was not upregulated post-proliferatively. These findings are discussed within the context of TCDD effects on estrogens and vitamin D-responsive developmental gene expression during osteoblast differentiation and, from a broader biological perspective, on steroid hormone control of differentiation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: osteoblasts ; proliferation ; growth control ; differential display ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal rat calvarial-derived osteoblasts in vitro (ROB) reinitiate a developmental program from growth to differentiation concomitant with production of a bone tissue-like organized extracellular matrix. To identify novel genes which may mediate this sequence, we isolated total RNA from three stages of the cellular differentiation process (proliferation, extracellular matrix maturation, and mineralization), for screening gene expression by the differential mRNA display technique. Of 15 differentially displayed bands that were analyzed by Northern blot analysis, one prominent 310 nucleotide band was confirmed to be proliferation-stage specific. Northern blot analysis showed a 600-650 nt transcript which was highly expressed in proliferating cells and decreased to trace levels after confluency and throughout the differentiation process. We have designated this transcript PROM-1 (for proliferating cell marker). A full length PROM-1 cDNA of 607 bp was obtained by 5′ RACE. A short open reading frame encoded a putative 37 amino acid peptide with no significant similarity to known sequences. Expression of PROM-1 in the ROS 17/2.8 osteosarcoma cell line was several fold greater than in normal diploid cells and was not downregulated when ROS 17/2.8 cells reached confluency. The relationship of PROM-1 expression to cell growth was also observed in diploid fetal rat lung fibroblasts. Hydroxyurea treatment of proliferating osteoblasts blocked PROM-1 expression; however, its expression was not cell cycle regulated. Upregulation of PROM-1 in response to TGF-β paralleled the stimulatory effects on growth as quantitated by histone gene expression. In conclusion, PROM-1 represents a small cytoplasmic polyA containing RNA whose expression is restricted to the exponential growth period of normal diploid cells; the gene appears to be deregulated in tumor derived cell lines. J. Cell. Biochem. 64:106-116. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...