ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Keywords: suspended sediments ; deposition ; granular substrate ; gravel bed ; filtration ; rivers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We present results Irom an experimental study of suspended particle (4.5–36.5 μm silicon carbide powder deposition from surface water to ‘clean’ equi-granular permeable beds in a small 12.5×12.5×15cm box and a re-circulating flume. Enhanced deposition rates of up to 5 times the accepted sediment deposition model (e.g., Einstein,1968 are explained by filtration of particles in the bed. Compared to this model depotiion increases with increasing surface fluid speed, decreasing suspended particle size and increasing bed particle size. These results can be explained by an increased ability of particles to penetrate into the bed with the pore water which increases the effective filter thickness. The predominant deposition mechanism within the bed pores appears to be settling. Enhanced deposition, evident in Einstein's (1968) experimental data, was previously attributed to flocculation but may be explained better by filtration. These enhanced deposition rates drop off to close to the accepted model predicted rate after a certain volume of sediment has entered the bed, which may be due to the stumping of deposits from the top of bed elements. This reduction in deposition rate occurs long before the bed is filled with fine sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: suspended sediment ; deposition ; granular substrate ; gravel bed ; filtration ; rivers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We present results from an experimental study of suspended particle (4.5-36.5 µm silicon carbide powder) deposition from surface water to 'clean' equi-granular permeable beds in a small 12.5x12.5x15cm box and a re-circulating flume. Enhanced deposition rates of up to 5 times the accepted sediment deposition model (e.g., Einstein, 1968) are explained by filtration of particles in the bed. Compared to this model deposition increases with increasing surface fluid speed, decreasing suspended particle size and increasing bed particle size. These results can be explained by an increased ability of particles to penetrate into the bed with the pore water which increases the effective filter thickness. The predominant deposition mechanism within the bed pores appears to be settling. Enhanced deposition, evident in Einstein's (1968) experimental data, was previously attributed to flocculation but may be explained better by filtration. These enhanced deposition rates drop off to close to the accepted model predicted rate after a certain volume of sediment has entered the bed, which may be due to the slumping of deposits from the top of bed elements. This reduction in deposition rate occurs long before the bed is filled with fine sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-09
    Description: Probabilistic hazard maps are used to graphically represent forecasts of potentially hazardous volcanic processes associated with an eruption. The construction of a probabilistic hazard map requires the characterization of all possible scenarios (aleatoric variability) that might lead to an event of interest. These scenarios then must be “fed in” to a physical model of the geophyiscal process which are typically computationally expensive to exercise. We present a hazard-mapping tool for the Long Valley region of California. This tool utilizes statistical surrogates of the physical model (in this demonstration, TITAN2D simulations of pyroclastic density currents) to perform rapid hazard assessment. It effectively replaces simulations that take O(min)-O(hours) with function evaluation which take a fraction of a second to exercise. This speed up enables tremendous flexibility in scenario modeling as we can quickly construct and compare probabilistic hazard maps under a variety of scenario models. Furthermore, we can quickly update a probabilistic hazard map as new data or emergent situations arise.
    Description: Published
    Description: Portland (OR)
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Long Valley volcanic region ; volcanic hazard assessment
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-09
    Description: The Long Valley volcanic region is an active volcanic area situated at the east base of the Sierra Nevada escarpment, and dominated by a 32-km wide resurgent caldera of ~760 ka. Eruptions during the last 180 ka have been localized at Mammoth Mountain on the western rim of the caldera, and along the Mono-Inyo Craters volcanic chain stretching about 45 km northward. The past eruption record is characterized by significant acceleration during the last 6 ka. In 1325 - 1350 AD there was a ~1 km3 eruption along a 25 km section of the Mono-Inyo Craters chain. The most recent eruption in ~1700 AD created Paoha Island in Mono Lake. The last eruption in the southern part of the system was ~10 ka (Red Cones), but continuous CO2 degassing, potential precursory signals and recent geophysical studies suggest that the Mammoth Mountain area could be active again. Multiple spatial probability models were developed, based on past vents locations. One of the models couples this information with pre-existing faults, sampling a fault outcrop site as a parameter of proximity to the vent location forecast. Similarly, different Poisson-type models have been developed for modeling the temporal sequence of eruptions and making estimates for the current volcanic intensity of the system (i.e. the expected rate of eruptions per year). The models implement various self-excitement features, assuming that the expected volcanic intensity is increased by past events and is instead decreased by prolonged periods of quiescence. All the available models can be considered as different “experts”, and this has significant analogies with “Structured Expert Judgment” problems. “Bayesian Model Averaging” is presented as a flexible technique for combining the results of multiple models, relying on their performance in hindcasting the past record. The analysis is setup in a doubly stochastic framework, enabling us to incorporate some of the main sources of epistemic uncertainty - these include the effects of the unknown relevance of Mammoth Mountain area, the incompleteness of the past record and mapped faults, and the uncertain age (and location) of past events. Our findings provide a rational basis for hazard mapping of the next eruption in the Long Valley volcanic region, suggesting that the hazard associated with Mammoth Mountain volcanism should be carefully reevaluated.
    Description: Published
    Description: Portland (OR)
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Long Valley volcanic region ; volcanic hazard assessment
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-09
    Description: Eruption probability assessments in the Long-Valley volcanic region (CA) Project Hazard SEES: Persistent volcanic crises resilience in the face of prolonged and uncertain risk, National Science Foundation, 2015 - 2018. Andrea Bevilacqua(1), Marcus Bursik(1), Abani K. Patra(2), E. Bruce Pitman(3), Qingyuan Yang(1) (1) University at Buffalo, Department of Geology (2) University at Buffalo, Department of Mechanical and Aerospace Engineering (3) University at Buffalo, Department of Materials Design and Innovation GLY 597SEM - Volcanology Seminar, 22 September 2017, Buffalo (NY)
    Description: Published
    Description: Buffalo (NY)
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Long Valley volcanic region ; volcanic hazard assessment
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...