ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computational neuroscience 6 (1999), S. 215-235 
    ISSN: 1573-6873
    Keywords: hippocampus ; dentate ; calcium channels ; potassium channels ; afterpotentials ; AHP ; DAP ; burst ; calcium-dependent potassium channels ; compartmental model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine , Physics
    Notes: Abstract We have constructed a detailed model of a hippocampal dentate granule (DG) cell that includes nine different channel types. Channel densities and distributions were chosen to reproduce reported physiological responses observed in normal solution and when blockers were applied. The model was used to explore the contribution of each channel type to spiking behavior with particular emphasis on the mechanisms underlying postspike events. T-type calcium current in more distal dendrites contributed prominently to the appearance of the depolarizing after-potential, and its effect was controlled by activation of BK-type calcium-dependent potassium channels. Co-activation and interaction of N-, and/or L-type calcium and AHP currents present in somatic and proximal dendritic regions contributed to the adaptive properties of the model DG cell in response to long-lasting current injection. The model was used to predict changes in channel densities that could lead to epileptogenic burst discharges and to predict the effect of altered buffering capacity on firing behavior. We conclude that the clustered spatial distributions of calcium related channels, the presence of slow delayed rectifier potassium currents in dendrites, and calcium buffering properties, together, might explain the resistance of DG cells to the development of epileptogenic burst discharges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computational neuroscience 8 (2000), S. 65-86 
    ISSN: 1573-6873
    Keywords: LTP ; CaM kinase II ; calmodulin ; calcium ; dendritic spine ; dentate ; computational model ; hippocampus ; phosphorylation ; autophosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine , Physics
    Notes: Abstract Activation of calcium/calmodulin-dependent protein kinase II (CaMKII) by calmodulin following calcium entry into the cell is important for long-term potentiation (LTP). Here a model of calmodulin binding and trapping by CaMKII in a dendritic spine was used to estimate levels and durations of CaMKII activation following LTP-inducing tetani. The calcium signal was calcium influx through NMDA receptor channels computed in a highly detailed dentate granule cell model. Calcium could bind to calmodulin and calmodulin to CaMKII. CaMKII subunits were either free, bound with calmodulin, trapped, autonomous, or capped. Strong low-frequency tetanic input produced little calmodulin trapping or CaMKII activation. Strong high-frequency tetanic input caused large numbers of CaMKII subunits to become trapped, and CaMKII was strongly activated. Calmodulin trapping and CaMKII activation were highly dependent on tetanus frequency (particularly between 10 and 100 Hz) and were highly sensitive to relatively small changes in the calcium signal. Repetition of a short high-frequency tetanus was necessary to achieve high levels of CaMKII activation. Three stages of CaMKII activation were found in the model: a short, highly activated stage; an intermediate, moderately active stage; and a long-lasting third stage, whose duration depended on dephosphorylation rates but whose decay rate was faster at low CaMKII activation levels than at high levels. It is not clear which of these three stages is most important for LTP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...