ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 33 (1995), S. 521-556 
    ISSN: 1432-1416
    Keywords: Population dynamics modeling ; Evolutionarily stable strategies ; Polymorphic life histories ; Age-at-maturity ; Harvesting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract We study the evolution of polymorphic life histories in anadromous semelparous salmon and the effects of harvesting. We derive dynamic phenotypic and genetic ESS models for describing the evolutionary dynamics. We show in our deterministic analysis that polymorphisms are not possible in a panmictic random mating population. Instead, genetic or behavioral polymorphisms may be observed in populations with assortative mating systems. Positive assortative mating may be supported and generated by behavioral and phenotypic traits like male mate choice, spawning ground selection by phenotype, or within-river homing-migration-distance by size. In the case of an evolutionarily stable dimorphism, the ESS is characterized by a reproductive ideal free distribution such that at an equilibrium the individuals are indifferent from the fitness point of view between the two life histories of early and late reproduction. Different strategy models - that is, phenotypic and genetic ESS models - yield identical behavioral predictions and, consequently, genetics does not seem to play an important role in the present model. An evolutionary response to increased fishing mortality is obvious and may have resource management implications. High sea fishing mortalities drive the populations toward early spawning. Thus it is possible that unselective harvesting at sea may eliminate, depending on the biological system, behavioral polymorphisms or genetic heterozygozity and drive the population to a monomorphic one. If within-river homing migration distances depend on the size of fish, unselective harvesting at sea, or selective harvesting of spawning runs in rivers, may reduce local population sizes on spawning grounds high up rivers. Finally, harvesting in a population may cause a switch in a dominant life-history strategy in a population so that anticipated sustainable yields cannot be realized in practice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 11 (1997), S. 105-126 
    ISSN: 1573-8477
    Keywords: delayed reproduction ; evolutionarily stable strategy ; life history polymorphism ; population dynamics ; chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Behavioural and life history polymorphisms are often observed in animal populations. We analyse the timing of maturation and reproduction in risky and resource-limited environments. Field and laboratory evidence suggests that female voles and mice, for example, can adjust their breeding according to the level of risk to their own survival and to survival probabilities and recruitment of young produced under different environmental conditions. Under risky or harsh conditions breeding can be postponed until later in the current breeding season or even to the next breeding season. We develop a population dynamics and life history model for polymorphism in reproduction (co-existence of breeding and non-breeding behaviours) of females in an age-structured population, with two temporally distinct mating events within the breeding season. We assume that, after overwintering, the females can breed in spring and again in summer or they can delay breeding in spring and breed in summer only. Young females born in spring can either mature and breed in summer or stay immature and postpone breeding over the winter to the next breeding season. We show that an evolutionarily stable breeding strategy is either an age-structured combination of pure breeding behaviours (old females breed and young delay maturity) or a mixed breeding behaviour within age-classes (a fraction of females breed and the rest of the age class postpones breeding). Co-occurrence of mixed reproductive behaviour in spring and summer within a single breeding season is observed in fluctuating populations only. The reproductive patterns depend on intraspecific, possibly interspecific, and ecological factors. The density dependence (e.g. social suppression) and predation risk are shown to be possible evolutionary mechanisms in adjusting the relative proportions of the different but co-existing reproductive behaviours.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...