ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.5  (2)
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We used the tropospheric and lower stratospheric 3D winds for four consecutive years (2017–2020) to study the momentum flux (MF) and vertical wind power spectra (VWP) over Andøya, Norway (69.30°N, 16.04°E) using the Middle Atmosphere Alomar Radar System. The spectra range from 3.5 days〈sup〉−1〈/sup〉 > 〈italic〉f〈/italic〉 > 30 min〈sup〉−1〈/sup〉, which are categorized in terms of observed/ground‐based frequency (as the local inertial period is 13 h over Andøya), height ranges, and seasons. Our results indicate for the first time that (a) both the zonal and meridional MF display peaks around the inertial period (13 h) in the troposphere (1.80–12.00 km) during all seasons (with some exceptions), while VWP exhibits such features in the whole height range (1.80–18.00 km), (b) the minimum variability in MF, VWP, and kinetic energy is observed during summer, and (c) both the MF and VWP demonstrate height variation with maximum deviations below the tropopause.〈/p〉
    Description: Plain Language Summary: The wind measurements are used to study the height and seasonal variation of momentum flux and vertical wind power spectra during 2017–2020. We report for the first time that both the momentum flux and vertical wind power spectra depict more variations in the tropospheric heights (around 1.80–7.20 km), below the tropopause, with the minimum amplitudes in the summer months (June–July–August). Moreover, long‐period oscillations have more energy than short‐period oscillations, and therefore, contribute more to the energy or flux transfer from the lower to the higher atmosphere. The month versus height profile of kinetic energy also portrays a similar feature with considerably more magnitude for the long‐period oscillations than the short‐period ones. The kinetic energy displays an enhancement of magnitude near the tropopause (∼5.00–10.00 km).〈/p〉
    Description: Key Points: The zonal and meridional momentum flux spectra exhibit a peak around the inertial period of 13 h in the troposphere (1.80–12.00 km). Height profiles of momentum flux, vertical wind power spectra, and kinetic energy display seasonal variation with a minimum during summer. The maximum variability of momentum flux and vertical wind power spectra is noticed below tropopause and decreases with increasing height.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.22000/766
    Keywords: ddc:551.5 ; atmospheric gravity waves ; momentum flux ; power spectra ; kinetic energy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-19
    Description: The total electron content (TEC) data derived from the GAIA (Ground-to-topside model of Atmosphere Ionosphere for Aeronomy) is used to study the seasonal and longitudinal variation of occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) during daytime (09:00–15:00 LT) for the year 2011 at eight locations in northern and southern hemispheres, and the results are compared with ground-based Global Positioning System (GPS)-TEC. To derive TEC variations caused by MSTIDs from the GAIA (GPS) data, we obtained detrended TEC by subtracting 2-h (1-h) running average from the TEC, and calculated standard deviation of the detrended TEC in 2 h (1 h). MSTID activity was defined as a ratio of the standard deviation to the averaged TEC. Both GAIA simulation and GPS observations data show that daytime MSTID activities in the northern and southern hemisphere (NH and SH) are higher in winter than in other seasons. From the GAIA simulation, the amplitude of the meridional wind variations, which could be representative of gravity waves (GWs), shows two peaks in winter and summer. The winter peak in the amplitude of the meridional wind variations coincides with the winter peak of the daytime MSTIDs, indicating that the high GW activity is responsible for the high MSTID activity. On the other hand, the MSTID activity does not increase in summer. This is because the GWs in the thermosphere propagate poleward in summer, and equatorward in winter, and the equatorward-propagating GWs cause large plasma density perturbations compared to the poleward-propagating GWs. Longitudinal variation of daytime MSTID activity in winter is seen in both hemispheres. The MSTID activity during winter in the NH is higher over Japan than USA, and the MSTID activity during winter in the SH is the highest in South America. In a nutshell, GAIA can successfully reproduce the seasonal and longitudinal variation of the daytime MSTIDs. This study confirms that GWs cause the daytime MSTIDs in GAIA and amplitude and propagation direction of the GWs control the noted seasonal variation. GW activities in the middle and lower atmosphere cause the longitudinal variation.
    Description: Japan Society for the Promotion of Science, KAKENHI (15H05815, 16H06286), Project for Solar-Terrestrial Environment Prediction (PSTEP) and Study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observation
    Description: Projekt DEAL
    Keywords: ddc:551.5 ; Daytime MSTIDs ; GAIA model ; GPS ; Gravity waves ; Meridional wind ; TEC
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...