ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: We report on the discovery and follow-up timing observations of a 63-ms radio pulsar, PSR J1105-6107. We show that the pulsar is young, having a characteristic age of only 63kyr. We consider its possible association with the nearby remnant G290.1-0.8 (MSH 11-61A) but uncertainties in the distances and ages preclude a firm conclusion.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN10762 , NCTS# 16972-14; Annual Meeting, Division for Planetary Science; Oct 06, 2013 - Oct 11, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: LWA Current and Future Users Meeting; May 12, 2011 - May 13, 2011; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: National Radio Science Meeting (USNC-URSI); Jan 05, 2011 - Jan 09, 2011; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: Disk disperse in a few million years, before which they must form planets. Photoevaporation and viscosity are mainly responsible for disk dispersal. EUV, FUV and X-rays have all been suggested as photoevaporation agents, disk evolutionary scenarios and predicted mass loss rates in each case differ. Stellar mass and radiation field, disk properties, magnitude of viscosity, and dust evolution all play significant roles in determining the evolution of the disk and its lifetime. Observational diagnostics of photoevaperative flows include [Nell] and perhaps [OI]. These are at present inconclusive and better diagnostics are needed.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN17213 , The Disk in Relation to The Formation of Planets And Their Protoatmospheres; Aug 25, 2014 - Aug 29, 2014; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
    Keywords: Astronomy
    Type: National Radio Science Meeting; Jan 05, 2011; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We presented self-consistent disk models of T Tauri stars that include a parameterized treatment of dust settling and grain growth, building on techniques developed in a series of papers by D'Alessio et al. The models incorporate depleted distributions of dust in upper disk layers along with larger sized particles near the disk midplane, which are expected theoretically and, as we suggested earlier, are necessary to account for millimeter-wave emission, SEDs, scattered light images, and silicate emission features simultaneously. By comparing the models with recent mid- and near-IR observations, we find that the dust-to-gas mass ratio of small grains at the upper layers should be less than 10% of the standard value. The grains that have disappeared from the upper layers increase the dust-to-gas mass ratio of the disk interior; if those grains grow to maximum sizes of the order of millimeters during the settling process, then both the millimeter-wave fluxes and spectral slopes can be consistently explained. Depletion and growth of grains can also enhance the ionization of upper layers, increasing the possibility of the magnetorotational instability for driving disk accretion.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 638; 1; 314-335
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We report on multifrequency observations performed during 2012 December-2013 August of the first narrow-line Seyfert 1 galaxy detected in gamma rays, PMN J0948+0022 (z equal to 0.5846). A gamma-ray flare was observed by the Large Area Telescope on board Fermi during 2012 December-2013 January, reaching a daily peak flux in the 0.1-100 GeV energy range of (155 plus or minus 31)10(exp 8) ph cm (exp 2) s (exp 1) on 2013 January 1, corresponding to an apparent isotropic luminosity of approximately 1.510)exp 48) erg s(exp 1). The gamma-ray flaring period triggered Swift and VERITAS observations in addition to radio and optical monitoring by OVRO, MOJAVE, and CRTS. A strong flare was observed in optical, UV, and X- rays on 2012 December 30, quasi-simultaneously to the gamma-ray flare, reaching a record flux for this source from optical to gamma rays. VERITAS observations at very high energy (E greater than 100 GeV) during 2013 January 6-17 resulted in an upper limit of F(sub greater than 0.2 TeV) less than 4.0 10(exp 12) ph cm(exp 2) s(exp 1). We compared the spectral energy distribution (SED) of the flaring state in 2013 January with that of an intermediate state observed in 2011. The two SEDs, modelled as synchrotron emission and an external Compton scattering of seed photons from a dust torus, can be modelled by changing both the electron distribution parameters and the magnetic field.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN24339 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 446; 3; 2456-2467
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Observations of T Tauri stars and young brown dwarfs suggest that the accretion rates of their disks scales roughly with the square of the central stellar mass. No dependence of accretion rate on stellar mass is predicted by the simplest version of the Gammie layered disk model, in which nonthermal ionization of upper disk layers allows accretion to occur via the magnetorotational instability. We show that a minor modification of Gaminie's model to include heating by irradiation from the central star yields a modest dependence of accretion on the mass of the central star. A purely viscous disk model could provide a strong dependence of accretion rate on stellar mass if the initial disk radius (before much viscous evolution has occurred) has a strong dependence on stellar mass. However, it is far from clear that at least the most massive pre-main-sequence disks can be totally magnetically activated by X-rays or cosmic rays. We suggest that a combination of effects are responsible for the observed dependence, with the lowest mass stars having the lowest mass disks, which can be thoroughly magnetically active, while the higher mass stars have higher mass disks that have layered accret,ion and relatively inactive or "dead" central zones at some radii. In such dead zones, we suggest that gravitational instabilities may play a role in allowing accretion to proceed. In this connection, we emphasize the uncertainty in disk masses derived from dust emission and argue that T Tauri disk masses have been systematically underestimated by conventional analyses. Furtlier study of accretion rates, especially in the lowest mass stars, would help to clarify the mechanisms of accretion in T Tauri stars.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 648; 1; 484-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We presented Spitzer Infrared Spectrograph (IRS) observations of two objects of the Taurus population that show unambiguous signs of clea,ring in their inner disks. In one of the objects, DM Tau, the outer disk is truncated at 3 AU; this object is akin to another recently reported in Taurus, CoKu Tau/4, in that the inner disk region is free of small dust. Unlike CoKu Tau/4, however, this star is still accreting, so optically thin gas should still remain in the inner disk region. The other object, GM Aur, also accreting, has about 0.02 lunar masses of small dust in the inner disk region within about 5 AU, consistent with previous reports. However, the IRS spectrum clearly shows that the optically thick outer disk has an inner truncation at a much larger radius than previously suggested, of order 24 AU. These observations provide strong evidence for the presence of gaps in protoplanetary disks.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 630; 2; L185 - L188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...