ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Formal methods in system design 11 (1997), S. 41-70 
    ISSN: 1572-8102
    Keywords: dataflow programming ; synchronous dataflow ; memory management ; multirate signal processing algorithms ; SDF compiler ; on-chip memory ; minimum cuts ; dynamic programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we formally develop techniques that minimize the memory requirements of a target program when synthesizing software from dataflow descriptions of multirate signal processing algorithms. The dataflow programming model that we consider is the synchronous dataflow (SDF) model [21], which has been used heavily in DSP design environments over the past several years. We first focus on the restricted class of well-ordered SDF graphs. We show that while extremely efficient techniques exist for constructing minimum code size schedules for well-ordered graphs, the number of distinct minimum code size schedules increases combinatorially with the number of vertices in the input SDF graph, and these different schedules can have vastly different data memory requirements. We develop a dynamic programming algorithm that computes the schedule that minimizes the data memory requirement from among the schedules that minimize code size, and we show that the time complexity of this algorithm is cubic in the number of vertices in the given well-ordered SDF graph. We present several extensions to this dynamic programming technique to more general scheduling problems, and we present a heuristic that often computes near-optimal schedules with quadratic time complexity. We then show that finding optimal solutions for arbitrary acyclic graphs is NP-complete, and present heuristic techniques that jointly minimize code and data size requirements. We present a practical example and simulation data that demonstrate the effectiveness of these techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Formal methods in system design 5 (1994), S. 183-205 
    ISSN: 1572-8102
    Keywords: dataflow programming ; multirate signal processing ; optimizing compilers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The synchronous dataflow (SDF) programming paradigm has been used extensively in design environments for multirate signal processing applications. In this paradigm, the repetition of computations is specified by the relative rates at which the computations consume and produce data. This implicit specification of iteration allows a compiler to easily explore alternative nested loop structures for the target code with respect to their effects on code size, buffering requirements and throughput. In this paper, we develop important relationships between the SDF description of an algorithm and the range of looping structures offered by this description, and we discuss how to improve code efficiency by applying these relationships.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...