ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-15
    Description: The construction of seismological community services for the European Plate Observing System Research Infrastructure (EPOS) is by now well under way. A significant number of services are already operational, largely based on those existing at established institutions or collaborations like ORFEUS, EMSC, AHEAD and EFEHR, and more are being added to be ready for internal validation by late 2017. In this presentation we focus on a number of issues related to the interaction of the community of users with the services provided by the seismological part of the EPOS research infrastructure. How users interact with a service (and how satisfied they are with this interaction) is viewed as one important component of the validation of a service within EPOS, and certainly is key to the uptake of a service and from that also it’s attributed value. Within EPOS Seismology, the following aspects of user interaction have already surfaced: a) User identification (and potential tracking) versus ease-of-access and openness Requesting users to identify themselves when accessing a service provides various advantages to providers and users (e.g. quantifying & qualifying the service use, customization of services and interfaces, handling access rights and quotas), but may impact the ease of access and also shy away users who don’t wish to be identified for whatever reason. b) Service availability versus cost There is a clear and prominent connection between the availability of a service, both regarding uptime and capacity, and its operational cost (IT systems and personnel), and it is often not clear where to draw the line (and based on which considerations). In connection to that, how to best utilize third-party IT infrastructures (either commercial or public), and what the long-term cost implications of that might be, is equally open. c) Licensing and attribution The issue of intellectual property and associated licensing policies for data, products and services is only recently gaining more attention in the community. Whether at all, and if yes then how to license, is still diversely discussed, while on national level more and more legislative requirements create boundary conditions that need to be respected. Attribution (of service use and of data/product origin) is only one related aspect, but of high importance the scientific world. In EPOS Seismology we attempt to find common approaches to address the above issues, also closely co-ordinated to the developments across the other EPOS domains. In this presentation we discuss the current strategies, potential solutions identified, and remaining open questions.
    Description: H2020 Project EPOS-IP, Cordis Project ID 676564
    Description: Published
    Description: Vienna, Austria
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 4IT. Banche dati
    Keywords: seismology ; data dissemination ; 04. Solid Earth ; 04.06. Seismology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-23
    Description: Easy, efficient and comprehensive access to data, data products, scientific services and scientific software is a key ingredient in enabling research at the frontiers of science. Organizing this access across the European Research Infrastructures in the field of seismology, so that it best serves user needs, takes advantage of state-of-the-art ICT solutions, provides cross-domain interoperability, and is organizationally and financially sustainable in the long term, is the core challenge of the implementation phase of the Thematic Core Service (TCS) Seismology within the EPOS-IP project. Building upon the existing European-level infrastructures ORFEUS for seismological waveforms, EMSC for seismological products, and EFEHR for seismological hazard and risk information, and implementing a pilot Computational Earth Science service starting from the results of the VERCE project, the work within the EPOS-IP project focuses on improving and extending the existing services, aligning them with global developments, to at the end produce a well coordinated framework that is technically, organizationally, and financially integrated with the EPOS architecture. This framework needs to respect the roles and responsibilities of the underlying national research infrastructures that are the data owners and main providers of data and products, and allow for active input and feedback from the (scientific) user community. At the same time, it needs to remain flexible enough to cope with unavoidable challenges in the availability of resources and dynamics of contributors. The technical work during the next years is organized in four areas: - constructing the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in EIDA; - further development and expansion of services to access seismological products of scientific interest as provided by the community by implementing a common collection and development (IT) platform, improvements in the earthquake information services e.g. by introducing more robust quality indicators and diversifying collection and dissemination mechanisms, as well as improving historical earthquake data services; - development of a comprehensive suite of earthquake hazard products, tools, and services harmonized on the European level and available through a common access platform, encompassing information on seismic sources, seismogenic faults, ground-motion prediction equations, geotechnical information, and strong-motion recordings in buildings, together with an interface to earthquake risk; - a portal implementation of computational seismology tools and services, specifically for seismic wave- form propagation in complex 3D media following the results of the VERCE project, and initiating the inclusion of further suitable codes on that portal in discussion with the community, forming the basis of EPOS computational earth science infrastructure. This will be accompanied by development and implementation of integrated and interoperable metadata structures, adequate and referencable persistent identifiers, and appropriate user access and authorization mecha- nisms. Here we present further detail on the work plan with the attempt to foster interaction with the target user community on the spectrum of services as well as on feedback mechanisms and governance.
    Description: H2020 Project EPOS-IP, Cordis Project ID 676564
    Description: Published
    Description: Vienna, Austria
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 4IT. Banche dati
    Keywords: data dissemination ; seismology ; data infrastructure ; 04.06. Seismology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...