ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6822
    Keywords: astrocytes ; cytoskeleton ; embryonal carcinoma ; immunofluorescence ; methylmercury ; microtubules ; neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 μM resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronal
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6822
    Keywords: cytoskeleton ; embryonal carcinoma cells ; immunofluorescence ; methylmercury ; mitosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Immunofuorescence staining with antibodies to tubulin and vimentin and staining with phalloidin have been used to examine the effects of methylmercury on the cytoskeleton of embryonal carcinoma cells in culture. Exposure of embryonal carcinoma cells to methylmercury (0.01 to 10 μm) resulted in concentration- and time-dependent disassembly of microtubules in interphase and mitotic cells. These effects were reversible when cultures were washed free of methylmercury. Spindle microtubules were more sensitive than those of interphase cells. Spindle damage resulted in an accumulation of cells in prometaphase/metaphase, which; correlated with a temporary delay in the resumption of normal proliferation rate upon removal of methylmercury. Of the interphase cytoskeletal components, microtubules were the first affected by methylmercury. Vimentin intermediate filaments appeared relatively insensitive to methylmercury, but showed a reorganization secondary to the microtubule disassembly. Actin microfilaments appeared unchanged in cells showing complete absence of microtubules. Our results 1) support previous reports suggesting that microtubules are a primary target of methylmercury, 2) document a differential sensitivity of mitotic and interphase microtubule systems and 3) demonstrate the relative insensitivities of other cytoskeletal components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 291-304 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; microtubule ; microfilament ; adult ; culture ; cardiac ; myocyte ; immunofluorescence ; antibodies ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Antitubulin, phalloidin. and antimyosin were used to study the distribution of microtubules, microfilaments, and myofibrils in cultured adult cardiomyocytes. These cells undergo a stereotypic sequence of morphological change in which myotypic features are lost and then reconstructed during a period of polymorphic growth. Microtubules, though rearranged during these events in culture, are always present in an organized network. Myosin and actin structures, on the other hand, initially degenerate. This initial degeneration is reversed when a cell attaches to the culture substratum. Upon attachment, new microtubules are laid down as a cortical network adjacent to the sarcolemma and, subsequently, as a network in the basal part of the cell. Actin and then myosin filament bundles appear next, in a pattern corresponding to the pattern of the microtubules. Finally, striated myofibrils are formed, first in the central part of the cell, and subsequently in the outgrowing processes of the cell, A mechanism is suggested by which the eventual polymorphic shape of a cell is related to the shape of its initial area of contact with the culture substratum. Finally, a model of myofibrillogenesis is proposed in which microtubules participate in the insertion of myosin among previously formed actin filament bundles to produce myofibrils.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...