ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-24
    Description: Abstract
    Description: These datasets were used to evaluate the main controls on last ~6 million years erosion rate variability of the northwestern Himalaya. The Earth’s climate has been cooling during the last ~15 million years and started fluctuating between cold and warm periods since ~2-3 million years ago. Many researchers think that these long-term climatic changes were accompanied by changes in continental erosion. However, quantifying erosion rates in the geological past is challenging, and previous studies reached contrasting conclusions. In this study, we quantified erosion rates in the north-western Indian Himalaya over the past 6 million years by measuring in situ-produced cosmogenic 10Be in exhumed older foreland basin sediments. The 10Be is produced by cosmic rays in minerals at the Earth's surface, and its abundance indicates erosion rates. Our reconstructed erosion rates show a quasi-cyclic pattern with a periodicity of ~1 million year and a gradual increase towards the present. We suggest that both patterns—cyclicity and gradual increase—are unrelated to climatic changes. Instead, we propose that the growth of the Himalaya by repeatedly scraping off rocks from the Indian plate (basal accretion), resulted in changes of its topography that were accompanied by changes in erosion rates. In this scenario, basal accretion episodically changes rock-uplift patterns, which brings landscapes out of equilibrium and results in quasi-cyclic variations in erosion rates. We used numerical landscape evolution simulations to demonstrate that this hypothesis is physically plausible. Datasets provided here includes summary of the location, depositional age, and stratigraphic position of 41 Siwalik sandstone samples collected from the Haripur section in Himachal Pradesh, India (Dataset S1); 10Be analysis results of Siwalik samples (2021-006_Mandal-et-al_Dataset-S1); sample location and 10Be analysis results of modern river sands from the Yamuna River and its tributaries near the Dehradun Basin (2021-006_Mandal-et-al_Dataset-S2); input parameters for the calculation of paleoerosion rates (2021-006_Mandal-et-al_Dataset-S3); and reconstructed 10Be paleoconcentrations and paleoerosion rates (Dataset S4). Moreover, the data include a compilation of published magnetostratigraphy-derived sediment accumulation rates in the late Cenozoic Himalayan foreland basin (2021-006_Mandal-et-al_Dataset-S5). We also include a movie (2021-006_Mandal-et-al_Movie-S1) that is a complete numerical landscape evolution model run with four consecutive accretion cycles of equal magnitude. For more information (for e.g., sampling method, analytical procedure, and data processing) please refer to the associated data description file and the main article (Mandal et al., 2021).
    Keywords: Himalaya ; cosmogenic 10Be ; paleoerosion rate ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 BERYLLIUM-10 ANALYSIS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Abstract
    Description: This data publication is supplementary to the study on headwall erosion rates at Glacier d'Otemma in Switzerland, by Wetterauer et al. (2022). Debris on glacier surfaces stems from steep bedrock hillslopes that tower above the ice, so-called headwalls. Recently, rock walls in high-alpine glacial environments experience increased destabilization due to climate warming. Since supraglacial debris alters the melt behaviour of the ice underneath, increased headwall erosion and debris delivery to glacier surfaces will modify glacial mass balances. Therefore, we expect that the response of glaciers to climate change is likely linked to how headwall erosion responds to climate change. As headwall debris is deposited on the ice surface of valley glaciers it is passively transported downglacier, both supra- and englacially. Where two glaciers join, debris along their margins is merged to form medial moraines. Since medial moraine debris tends to be older downglacier, systematic downglacier-sampling of medial moraine debris and the measurement of in situ-produced cosmogenic 10Be concentrations ([10Be]) hold the potential to assess long-term (〉10^2-10^4 yrs) headwall erosion rates through time. However, to obtain the cosmogenic signals of headwall erosion, [10Be] within supraglacial debris need to be corrected for glacial transport time, as cosmogenic nuclides continue to accumulate during exposure and transport. This additional 10Be accumulation during debris transport can be accounted for by simple downglacier debris trajectory modelling. Providing our 10Be dataset together with detailed information on our 1-D modelling approach is the main objective of this data publication. The data is presented as one single xlsx-file with three different tables. A detailed description of the sample processing and the debris trajectory model are provided in the data description file of this data publication. For more information see our study Wetterauer et al. (2022).
    Description: Other
    Description: The data were collected as part of the project “COLD”, which investigates the Climate Sensitivity of Glacial Landscape Dynamics with a focus on the European Alps. This research receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement 759639.
    Keywords: Alpine glaciers ; medial moraines ; cosmogenic 10Be ; grain size ; headwall erosion rates ; supraglacial debris ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL LANDFORMS 〉 MORAINES 〉 MEDIAL MORAINE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-11
    Description: Abstract
    Description: Because of the multi-stepped pathways of sediment comprising the foreland fold-thrust belt (FFTB), detrital quartz grains that recycle from the FFTB sources contain cosmogenic radionuclides (CRN), such as 10^Be and 26^Al, accumulated during previous exposure, resulting in inheritance and, hence, anomalously low erosion rates. This inhibits the straightforward use of 10^Be as tracers for modern erosion rates and sediment discharge from the FFTB, prevalent at the external edges of collisional orogens such as the Himalaya. We present a novel approach for quantifying the erosion rates of FFTB by comparing measured and modeled CRN concentrations in fluvial sediments. We apply this approach to the Mohand Range, an emergent fault-related fold in the frontal part of the northwestern Himalaya (see the location map below). The 10^Be and 26^Al datasets presented here were used to calibrate our model, which we used to quantify the erosion rates in and sediment flux from the Mohand Range. Datasets provided here include a summary of the location and depositional age of 33 fluvial sediments and two sandstone samples collected from the Mohand Range, 10^Be analysis results of 23 of these fluvial sediments and two bedrock samples, and 26^Al-10^Be pair analysis results of the remaining ten fluvial sediment samples (Dataset S1). Moreover, the data include the depositional age map of uplifted older foreland sediments across the western Mohand Range (Dataset 2) and the map of best-fit 10^Be concentration inherited from Himalayan paleoerosion (Dataset 3) and sediment burial in the foreland (Dataset 4). We also include a map of the best-fit 10^Be concentration produced during modern erosion of the Mohand Range (Dataset 5) and a map of the best-fit uplift/erosion rates across the western Mohand Range (Dataset 6). For more information (e.g., sampling method, analytical procedure, and data processing), please refer to the main article (Mandal et al., 2023).
    Description: Other
    Description: File description: Dataset S1 (Dataset_S1.pdf): 10^Be and 26^Al sample location and analysis results of fluvial sediment and bedrock samples from the Mohand Range in the northwestern Himalaya. Dataset S2 (Depositional_age.tif): Map of depositional ages (Ma) of uplifted older foreland deposits in the western Mohand Range. Dataset S3 (Paleo10Be.tif): Map of best-fit 10^Be concentration (at gqtz-1) inherited from Himalayan paleoerosion. Dataset S4 (Burial10Be.tif): Map of best-fit 10^Be (at g_qtz^-1) concentration inherited from sediment burial in the foreland. Dataset S5 (Recent10Be.tif): Map of best-fit 10^Be concentration (at g_qtz^-1) acquired during modern erosion of the Mohand Range. Dataset S6 (Erosion_rate.tif): Map of best-fit uplift/erosion rates (mm yr-1) across the western Mohand Range.
    Keywords: Himalaya ; cosmogenic 10Be ; paleoerosion rate ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 BERYLLIUM-10 ANALYSIS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENTATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-20
    Description: Abstract
    Description: At valley glaciers, rockwall erosion supplies debris to glacier surfaces. Once deposited on the ice, rockwall debris is passively entrained and becomes part of the glacial system, e.g., forming medial moraines as downglacier transport continues. Where debris occurs supraglacial, it modifies ice ablation and, thus, changes in rockwall erosion and debris supply rates modify glacial debris cover and mass balance and may affect glacier retreat in response to climate change. Yet, estimates on rockwall erosion rates close to glacier surfaces are few and quantifying spatiotemporal supply patterns is not trivial. This data publication is supplementary to the study on rockwall erosion rates at five Swiss valley glaciers around Pigne d’Arolla, by Wetterauer & Scherler (2023). We temporally and spatially assess rockwall erosion by measuring in situ-produced cosmogenic 10Be concentrations ('[10Be]measured') in medial moraine debris, which we systematically sampled along downglacier-profiles, and by comparing records from various medial moraines, which are supplied by rockwalls differing in exposure and morphology. However, as '[10Be]measured' within supraglacial debris is the sum of '[10Be]rockwall', accumulated during rockwall erosion, and '[10Be]transport', accumulated during post-depositional downglacier transport, medial moraine '[10Be]measured' should be corrected for '[10Be]transport'. If glacier velocities through time are known, '[10Be]transport' can be estimated by downglacier debris trajectory modelling. Providing our 10Be dataset and ~40-year records of glacier surface velocities from four of the five valley glaciers (Glacier du Brenay, Glacier de Cheilon, Glacier de Pièce, Glacier de Tsijiore Nouve) is the main objective of this data publication. The dataset of the fifth glacier (Glacier d’Otemma) has already been published as case study by Wetterauer et al. (2022a,b).
    Description: Other
    Description: The data were collected as part of the project “COLD”, which investigates the Climate Sensitivity of Glacial Landscape Dynamics with a focus on the European Alps. This research receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement 759639.
    Keywords: Alpine glaciers ; medial moraines ; cosmogenic 10Be ; rockwall erosion rates ; supraglacial debris ; glacier surface velocities ; boulder tracking ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL LANDFORMS 〉 MORAINES 〉 MEDIAL MORAINE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...