ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.
    Description: Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production.
    Keywords: Net ecosystem production ; Net ecosystem carbon balance ; Gross primary production ; Ecosystem respiration ; Autotrophic respiration ; Heterotrophic respiration ; Net ecosystem exchange ; Net biome production ; Net primary production
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 297623 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: acetylene reduction ; conifer log ; coarse woody debris ; decay ; decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acetylene reduction was examined periodically for as long as 68 months in the outer and inner bark, sapwood, and heartwood of decaying logs of western hemlock [Tsuga heterophylla (Raf.) Sarg.] western redcedar (Thuja plicata D. Don), Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], and Pacific silver fir (Abies amabilis Dougl. ex Forbes) in the western Oregon Cascade Mountains. Tissues from freshly cut logs from sound trees were unable to reduce acetylene. However, after 18 months of decomposition, acetylene reduction was found in all log tissues except heartwood. Over the 68-month study period, no significant relationship between reduction rate and tissue moisture was found. Acetylene reduction rates differed significantly among tissues, log species, and time of exposure to decomposers. Although acetylene reduction generally showed a steady increase with time, tissues of some species showed a more complex, nonlinear pattern of change. Although the amount of nitrogen fixed is low compared to the total present in decaying logs, it might be an important source of readily available nitrogen for the microbiota responsible for decomposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...