ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 37 (1997), S. 353-362 
    ISSN: 0021-9304
    Keywords: bioabsorbable ; composite ; interface ; laser scanning confocal microscope ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In this study, a new visual characterization method was developed using laser scanning confocal microscopy (LSCM) to study morphologic properties, particularly at the fiber-matrix interface, by optical sectioning of bioabsorbable single-fiber composites. The interface gap width (IGW) between the fiber and matrix, and the changes in IGW after in vitro hydrolysis, named the gap rate (Rg), were measured from images obtained using the LSCM. Higher values for IGW and Rg showed faster degradation of the fiber-matrix interface. These parameters were used to investigate the effects of strain, wicking, different reinforcing fibers, and γ-irradiation on the fiber-matrix interface morphology. The component materials used were nonbioabsorbable AS4 carbon (C) fibers, bioabsorbable calcium phosphate (CaP), poly(glycolic acid) (PGA), and chitin fibers, and bioabsorbable poly(L-lactic acid) (PLLA) matrix. The application of strain on CaP/PLLA composites increased the IGW up to about 15%, after which there was no change up to 25%. The Rg for CaP/PLLA composites with the fiber ends exposed in vitro (permitting wicking) was greater than for CaP/PLLA with the fiber ends embedded completely within the matrix (preventing wicking). Open-end C/PLLA composites had the slowest rate of interface degradation in vitro, followed by chitin/PLLA, PGA/PLLA, and CaP/PLLA. The exposure of closed-end CaP/PLLA composites to 4 Mrad of γ-irradiation, in air at room temperature or in vacuum at 77K, accelerated the rate of interface degradation in vitro. In conclusion, an effective new visual characterization method was developed using LSCM, and it was used to show that (a) moderate strain could accelerate the degradation of the interface, (b) fiber-matrix interface wicking could accelerate the rate of degradation of the interface, (c) the rate of interface degradation depends on the type of fiber used, and (d) γ-irradiation could accelerate the rate of interface degradation. Furthermore, the results of LSCM analysis of different reinforcing fibers with a PLLA matrix agree with measurements of interfacial shear strength (IFSS) and single-fiber tensile strength reported in Part I of this study. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 37, 353-362, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: bioabsorbable ; composite ; interface ; adhesion ; mechanical properties, fibers ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The objective of this study was to characterize and evaluate the performance of various fiber-matrix composite systems by studying the mechanical, thermal, and physical properties of the fiber and matrix components, and by studying the fiber-matrix interface adhesion strength using both microbond and fragmentation methods. The composites studied were poly(L-lactic acid) (PLLA) matrix reinforced with continuous fibers of either nonabsorbable AS4 carbon (C), absorbable calcium phosphate (CaP), poly(glycolic acid) (PGA), or chitin. Carbon and CaP single fibers had high Young's moduli and failed in a brittle manner. PGA and chitin single fibers had relatively lower Young's moduli and relatively higher ductility. Upon in vitro hydrolysis, CaP fibers retained 17% of their tensile strength and 39% of their Young's modulus after 12 h, PGA fibers retained 10% of their tensile strength and 52% of their Young's modulus after 16 days, and chitin fibers retained 87% of their tensile strength and 130% of their Young's modulus after 25 days. PLLA films had much lower strength and Young's moduli, but much higher ductility relative to the single fibers. Using the microbond method, the initial fiber-matrix interfacial shear strength (IFSS) of C/PLLA and CaP/PLLA microcomposites was 33.9 and 12.6 MPa, respectively. Upon in vitro hydrolysis, C/PLLA retained 49% of IFSS after 15 days and CaP/PLLA retained 46% of IFSS after 6 h. Using a fiber fragmentation method, the initial IFSS of C/PLLA, CaP/PLLA, and chitin/PLLA was 22.2, 15.6, and 28.3 MPa, respectively. The performance of carbon fibers and C/PLLA composites was superior to the other fibers and fiber/PLLA systems, but the carbon fiber was nonabsorbable. CaP had the most suitable modulus of the absorbable fibers for fixing cortical bone fractures, but its rapid deterioration of mechanical properties and loss of IFSS limits its use. PGA and chitin fibers had suitable mechanical properties and their retention for fixing cancellous bone fractures, but likely had insufficient stiffness for applications such as bone plates for fixing cortical bone fractures. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 36, 469-477, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...