ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • bone  (5)
  • collagen  (3)
  • Wiley-Blackwell  (8)
Sammlung
Verlag/Herausgeber
  • Wiley-Blackwell  (8)
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 54 (1994), S. 231-238 
    ISSN: 0730-2312
    Schlagwort(e): bone ; osteocalcin ; alkaline phosphatase ; differentiation ; halogenated hydrocarbons ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent halogenated aromatic hydrocarbon, on the development of bone tissue-like organization in primary cultures of normal diploid calvarial-derived rat osteoblasts was examined. Initially, when placed in culture, these cells actively proliferate while expressing genes associated with biosynthesis of the bone extracellular matrix. Then, post-proliferatively, genes are expressed that render the osteoblast competent for extracellular matrix mineralization and maintenance of structural as well as functional properties of the mature bone-cell phenotype. Our results indicate that, in the presence of TCDD, proliferation of osteoblasts was not inhibited but post-confluent formation of multicellular nodules that develop bone tissue-like organization was dramatically suppressed. Consistent with TCDD-mediated abrogation of bone nodule formation, expression of alkaline phosphatase and osteocalcin was not upregulated post-proliferatively. These findings are discussed within the context of TCDD effects on estrogens and vitamin D-responsive developmental gene expression during osteoblast differentiation and, from a broader biological perspective, on steroid hormone control of differentiation.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Schlagwort(e): Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 0730-2312
    Schlagwort(e): oncogenes ; osteoblasts ; osteocalcin ; alkaline phosphatase ; collagen ; transcription ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: There is a generalized reciprocal relationship between cell growth and expression of genes that occurs following completion of proliferation, which supports the progressive development of cell and tissue phenotypes. Molecular mechanisms which couple the shutdown of proliferation with initiation of tissue-specific gene transcription have been addressed experimentally in cultures of primary diploid osteoblasts that undergo a growth and differentiation developmental sequence. Evidence is presented for a model which postulates that genes transcribed post-proliferatively are suppressed during cell growth by binding of the Fos/Jun protein complex to AP-1 Promoter sites associated with vitamin D responsive elements of several genes encoding osteoblast phenotype markers (Type I collagen, alkaline phosphatase, osteocalcin).
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 291-303 
    ISSN: 0730-2312
    Schlagwort(e): nuclear matrix ; TGF-β1 ; bone ; osteoblast differentiation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β-treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291-303, 1998. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 184-196 
    ISSN: 0730-2312
    Schlagwort(e): glucocorticoid ; transcription ; mRNA stability ; histone ; differentiation ; bone development ; osteoblast ; promoter factors ; collagen ; osteosarcoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The influence of dexamethasone on expression of the osteocalcin gene which encodes the most abundant non-collagenous and only reported bone-specific protein was examined in ROS 17/2.8 osteosarcoma cells which express a broad spectrum of genes related to bone formation. Consistent with previous reports, quantitation of cellular osteocalcin mRNA levels by Northern blot analysis, osteocalcin gene transcription by activity of the osteocalcin gene promoter fused to a chloramphenicol acetyl-transferase (CAT) mRNA coding sequence following transfection into ROS 17/2.8 cells, and osteocalcin biosynthesis by radioimmunoassay indicate that dexamethasone in a concentration range of 10-6 to 10-9 M only modestly modifies basal levels of osteocalcin gene expression. However, dexamethasone significantly inhibits these parameters of the vitamin D-induced upregulation of osteocalcin gene expression in both proliferating and in confluent ROS 17/2.8 cells. In this study, we observed that the extent to which abrogation of the vitamin D response occurs is dependent on basal levels of osteocalcin gene expression as reflected by a complete inhibition of the vitamin D-induced upregulation in a ROS 17/2.8K subline with low basal expression and only a partial reduction of the vitamin D stimulation in a ROS 17/2.8C subline with eightfold higher levels of basal expression. This effect of glucocorticoid appears to be at the transcriptional and post-transcriptional levels as demonstrated by a parallel decline in the cellular representation of osteocalcin mRNA, osteocalcin gene promoter activity, and osteocalcin biosynthesis. The complexity of the glucocorticoid effect on vitamin D-mediated transcriptional properties of the osteocalcin gene is indicated by persistence of sequence-specific protein-DNA interactions at two principal osteocalcin gene promoter regulatory elements, the osteocalcin (CCAAT) box which modulates basal level of transcription, and the vitamin D responsive element, where vitamin D-mediated enhancement of osteocalcin gene transcription is controlled.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 0730-2312
    Schlagwort(e): HL-60 cells ; bone ; proliferation ; gene regulation ; hsp27 ; hsp60 ; hsp70 ; hsp89α ; hsp89β ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89α, and hsp89β may be associated with the modifications in gene expression and cellular architecture that occur during differentiation.In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89α mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89α mRNA levels in HL-60 cells and of hsp89β mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 0730-2312
    Schlagwort(e): osteocalcin ; osteopontin ; collagen ; c-fos ; oncogene ; histone ; fibronectin ; alkaline phosphatase ; collagenase ; steroid hormone ; growth control ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10 -7 M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGFβ was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assay to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the vitamin D3 effect on gene expression. Those genes which are upregulated by 1,25(OH)2D3 are transcribed at an increased rate by dexamethasone, while those genes which are inhibited by vitamin D3 remain inhibited in the presence of dexamethasone and D3. We propose that the glucocorticoid promote changes in gene expression involved in cell-cell and cell-extracellular matrix signaling mechanism that support the growth and differentiation of cells capable of osteoblast phenotype development and bone tissue-like organization, while inhibiting the growth of cells that cannot progress to the mature osteoblast phenotype in fetal rat calvarial cultures. © 1992 Wiley-Liss, Inc.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 0730-2312
    Schlagwort(e): immortalized ; clonal ; alkaline phosphatase ; osteocalcin ; mineralization ; vitamin D3 ; dexamethasone ; parathyroid hormone ; interleukin-6 ; bone ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Osteoblasts are established targets of estrogen action in bone. We screened 66 conditionally immortalized clonal human osteoblast cell lines for estrogen receptors (ERs) using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ERα mRNA and transactivation of adenovirus-estrogen response element (ERE)-tk-luciferase by 17β-estradiol (17β-E2) for functional ER protein. One of these cell lines, termed HOB-03-CE6, was chosen for further characterization. The cells, which were conditionally immortalized with a temperature-sensitive SV40 large T antigen, proliferated at the permissive temperature (34°C) but stopped dividing at the nonpermissive temperature (&ge 39°C). Alkaline phosphatase activity and osteocalcin secretion were upregulated by 1&agr 25-dihydroxyvitamin D3 in a dose-dependent manner. The cells also expressed type I collagen and other bone matrix proteins, secreted a variety of growth factors and cytokines, formed mineralized nodules based on alizarin red-S and von Kossa histochemical staining, and responded to dexamethasone, all-trans retinoic acid, and transforming growth factor-β1. This cell line expressed 42-fold less ER message than MCF-7 human breast cancer cells, as determined by quantitative RT-PCR. However, adenovirus-ERE-tk-luciferase activity was upregulated three- to fivefold in these cells by 17β-E2 with an EC50 of 64 pM. Furthermore, this upregulation was suppressed by co-treatment with the anti-estrogen ICI-182, 780. Cytosolic extracts of these cells specifically bound [125I]-17β-E2 in a concentration-dependent manner with a Bmax of 2.7 fmoles/mg protein (∼ 1,200 ERs/cell) and a Kd of 0.2 nM. DNA gel-shift analysis using a [32P]-ERE demonstrated the presence of ERs in nuclear extracts of these cells. Moreover, binding of the extracts to this ERE was blocked by a monoclonal antibody to the human ER DNA-binding domain. We evaluated these cells for 14 of 20 reported endogenous responses to 17β-E2 in osteoblasts. Although most of these responses appeared to be unaffected by the steroid, 17β-E2 suppressed parathyroid hormone-induced cAMP production, as well as basal interleukin-6 mRNA expression; conversely, the steroid upregulated the steady-state expression of alkaline phosphatase message in these cells. In summary, we have identified a clonal, conditionally phenotypic, human osteoblast cell line that expresses functional ERs and exhibits endogenous responses to 17β-E2. This cell line will be a valuable in vitro model for exploring some of the molecular mechanisms of estrogen action in bone. J. Cell. Biochem. 65:368-387. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...