ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • chloride channel  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-6830
    Keywords: mercury ; copper ; zinc ; lanthanum ; lanthanides ; GABA receptor channel ; chloride channel ; dorsal root ganglion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The GABAA receptor-chloride channel complex has been shown to be modulated by a variety of chemicals. Scores of chemicals with diverse and unrelated structures augment the GABA-induced chloride current, while some other chemicals suppress the current. Certain heavy metals and a variety of polyvalent cations increase or decrease the current in a potent and efficacious manner. 2. We have studied the mechanisms whereby mercury, copper, zinc, and lanthanides modulate the GABA system by whole-cell and single-channel patch clamp techniques as applied to the rat dorsal root ganglion neurons in primary culture. 3. Mercuric chloride augmented the GABA-induced current to 115% of control at 0.1 µM and to 270% of control at 100 µM. It also generated a slowly developing inward current carried by a variety of ions. In contrast, methylmercury suppressed the GABA-induced current. The potent stimulation of the GABA system by mercuric chloride is deemed important in mercury intoxication. 4. Copper and zinc suppressed the GABA-induced current with an EC50 of 16 and 19 µM, respectively. They bound to a common site on the external surface of the GABA receptor-channel complex. 5. Lanthanum augmented the GABA-induced current with an EC50 of 230 µM by increasing the affinity of the receptor for GABA. It bound to a site on or near the external surface of the GABA receptor-channel complex which is different from the sites for GABA, barbiturates, benzodiazepines, picrotoxin, and copper/zinc. 6. Six other lanthanides with larger atomic numbers also exerted the same stimulatory effect with their efficacies increasing with the atomic number. 7. Single-channel analyses have revealed that the augmentation of whole-cell current by terbium, a lanthanide, is due to three actions: an increase in the overall mean open time, a decrease in the overall mean closed time, and an increase in the overall mean burst time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...