ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of insect behavior 2 (1989), S. 523-543 
    ISSN: 1572-8889
    Keywords: chemotaxonomy ; aggression ; kin recognition ; kin discrimination ; Zootermopsis ; Isoptera ; species interactions ; cuticular hydrocarbons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dampwood termite genus ZootermopsisEmerson contains three recognized species with four distinct and consistent hydrocarbon phenotypes. Agonistic behaviors among nonreproductive insects from colonies of the same and different hydrocarbon phenotypes were observed in the laboratory. Various combinations of soldier versus nymphs, pseudergate versus pseudergate, and soldier versus soldier encounters were used in experimental trials. Soldiers or pseudergates seldom attack individuals of the same hydrocarbon phenotype. Z. angusticollis(Hagen) (phenotype II) is typically aggressive toward phenotype III of Z. nevadensis(Hagen) but not always aggressive against phenotype I of Z. nevadensis.The variation in response is dependent on which castes are placed in the bioassay arena: soldier versus soldier bouts result in consistent aggression, while pseudergate versus pseudergate or soldier versus nymphs contacts do not. Both pseudergates and soldiers of Z. laticeps(Banks) (phenotype IV) respond agonistically toward the other three phenotypes: Z. angusticollis (II) and Z. nevadensis(I and III). Although hydrocarbon phenotypes I and III, both Z. nevadensis,are morphologically indistinguishable, agonistic behavioral responses between phenotype I and phenotype III are not equivalent to I versus I or III versus III behavioral responses. The I versus III engagements, regardless of the castes involved, display a greater proportion of avoidance and aggressive responses than I or III intraphenotype encounters. We interpret the lack of avoidance or aggressive behavior within each of the two phenotypes of Z. nevadensisand the significant avoidance and aggressive behavior between phenotypes as definite evidence of discrimination between disparate hydrocarbon phenotypes. These agonistic bioassays along with data on distinct hydrocarbon patterns and geographic distributions serve as the basis for creating two subspecies of Z. nevadensis: Z. n. nevadensis(Hagen) and Z. n. nuttingiHaverty and Thorne, ssp. nov.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 23 (1997), S. 927-964 
    ISSN: 1573-1561
    Keywords: Cuticular hydrocarbons ; chemotaxonomy ; Isoptera ; tropical termites ; gas chromatography ; mass spectrometry ; Virgin Islands ; Caribbean termites ; olefins ; methylalkanes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A survey of the termites (Isoptera) of 17 islands of the British Virgin Island (BVI) complex yielded eight taxa belonging to three families. The Kalotermitidae include Neotermes mona (Banks), Cryptotermes brevis (Walker), Procryptotermes corniceps (Snyder), and an undetermined species of Incisitermes, likely Incisitermes nr snyderi (Light) or I. incisus (Silvestri). The only rhinotermitid collected is an undetermined species of Heterotermes (Froggatt). Parvitermes wolcotti (Snyder), Nasutitermes costalis (Holmgren), and N. acajutlae (Holmgren) comprise the Termitidae. Cuticular hydrocarbon mixtures were characterized for each of the taxa. Blends of abundant hydrocarbons are species-specific and can be used to identify a given taxon without the diagnostic castes, soldiers, or imagoes, although the species of Incisitermes were not separable on the basis of cuticular hydrocarbons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-1561
    Keywords: Nasutitermes acajutlae ; chemotaxonomy ; Isoptera ; Termitidae ; tropical termites ; gas chromatography ; cuticular hydrocarbons ; olefins ; mass spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Using data from the arboreal nestingNasutitermes acajutlae (Holmgren), we propose standard collection and extraction methodology for characterization of cuticular hydrocarbons of termites under field conditions in the tropics. Specifically, we evaluated: (1) the effect of the duration and the number of extractions; (2) the effect of drying termites before extraction; (3) the effect of sample size; (4) the effect of solvents (ethanol versus hexane) on cuticular hydrocarbon profiles. Olefins comprise ca. 70% of the cuticular hydrocarbons ofN. acajutlae. Hydrocarbons consist of two distinct groups: early-eluting components, primarilyn-alkanes and methyl-branched alkanes, and late-eluting compounds, which consist almost exclusively of unsaturated components with one to six double bonds. Soldiers have more early-eluting compounds than workers or alates. Nests from the same island had qualitatively similar, but quantitatively dissimilar hydrocarbon mixtures. Brief extractions of 300 live workers in 10 ml of hexane for only 20 sec produced a hydrocarbon mixture equivalent to a 10-min extraction. Long-term extraction of 300 workers in hexane for two years resulted in different mixtures of hydrocarbons. Drying workers tended to enhance extraction of the less abundant unsaturated compounds such as C41.4 and C41.5. A single extraction of a minimum of 100 workers (live or dried), with hexane for 20 sec to 10 min is best; these extraction regimes resulted in mixtures of hydrocarbons that are quantitatively very similar. For quantitative comparisons, extracts from dried samples should not be compared to those from live samples. Storage in ethanol caused numerous unidentified, nonhydrocarbon compounds to be extracted either from the cuticle or from internal tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...