ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 621-628 
    ISSN: 0006-3592
    Keywords: Kluyveromyces ; Candida utilis ; Kluyver effect ; chemostat ; biomass ; whey ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Many facultatively fermentative yeast species exhibit a “Kluyver effect”: even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L-1 from 200 g L-1 maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 272-286 
    ISSN: 0006-3592
    Keywords: glutamine limitation ; mammalian cells ; chemostat ; specific metabolic rates ; hybridoma ; medium optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h-1, were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L-1. Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L-1, and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L-1 glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: Crabtree effect ; sugar transport ; growth kinetics ; yeast ; chemostat ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The glucose transport capacity of Saccharomyces cerevisiae CBS 8066 was studied in aerobic glucose-limited chemostat cultures. Two different transport systems were encountered with affinity constants of 1 and 20 mM, respectively. The capacity of these carriers (Vmax) was dependent on the dilution rate and the residual glucose concentration in the culture. From the residual glucose concentration in the fermenter and the kinetic constants of glucose transport, their in situ contribution to glucose consumption was determined. The sum of these calculated in situ transport rates correlated well with the observed rate of glucose consumption of the culture.The growth kinetics of S. cerevisiae CBS 8066 in glucose-limited cultures were rather perculiar. At low dilution rates, at which glucose was completely respired, the glucose concentration in the fermenter was constant at 110 μM, independent of the glucose concentration in the reservoir. At high dilution rates, characterized by the occurrence of both respiration and alcoholic fermentation, the residual substrate concentration followed Monod kinetics. In this case, however, the overall affinity constant was dependent on the reservoir glucose concentration.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: Maltose transport ; α-glucosidase ; yeast ; chemostat ; cell death ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: When Saccharomyces cerevisiae CBS 8066 was grown under maltose limitation, two enzymes specific for maltose utilization were present: a maltose carrier, and the maltose-hydrolysing α-glucosidase. The role of these two enzymes in the physiology of S. cerevisiae was investigated in a comparative study in which Candida utilis CBS 621 was used as a reference organism.Maltose pulses to a maltose-limited chemostat culture of S. cerevisiae resulted in ‘substrate-accelerated death’. This was evident from: (1) enhanced protein release from cells: (2) excretion of glucose into the medium; (3) decreased viability. These effects were specific with respect to both substrate and organism: pulses of glucose to maltose-limited cultures of S. cerevisiae did not result in cell death, neither did maltose pulses to maltose-limited cultures of C. utilis. The maltose-accelerated death of S. cerevisiae is most likely explained in terms of an uncontrolled uptake of maltose into the cell, resulting in an osmotic burst. Our results also provide evidence that the aerobic alcoholic fermentation that occurs after pulsing sugars to sugar-limited cultures of S. cerevisiae (short-term Crabtree effect) cannot solely be explained in terms of the mechanism of sugar transport. Both glucose and maltose pulses to maltose-limited cultures triggered aerobic alcohol formation. However, glucose transport by S. cerevisiae occurs via facilitated diffusion, whereas maltose entry into this yeast is mediated by a maltose/proton symport system.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Cytochrome c peroxidase ; hydrogen peroxide ; energetics ; yeast ; anaerobic respiration ; chemostat ; mitochondria ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Chemostat cultures of a catalase-negative mutant of Hansenula polymorpha CBS 4732 were able to decompose hydrogen peroxide at a high rate. This was apparent from experiments in which yeast was grown under carbon limitation in chemostat culture on mixtures of glucose and H2O2. The enzyme responsible for H2O2 degradation is probably the mitochondrial enzyme cytochrome c peroxidase (CCP), which was present at very high activities. This enzyme was partially purified and shown to be specific for reduced cytochrome c as an electron donor; no reaction was observed with NAD(P)H. Thus, reducing equivalents for H2O2 degradation by CCP must be provided by the respiratory chain.That H2O2 can act as an electron acceptor for reducing equivalents could be confirmed with experiments in which cells were incubated with ethanol and H2O2 in the absence of oxygen. This resulted in oxidation of ethanol to equimolar amounts of acetate.Energetic aspects of mitochondrial H2O2 decomposition via CCP and the physiological function of CCP in yeasts are discussed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: chemostat ; mixed substrates ; gluconeogenesis ; glyoxylate cycle ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Growth efficiency and regulation of key enzyme activities were studied in carbon- and energy-limited chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol at a fixed dilution rate. Biomass yields on substrate carbon and oxygen could be adequately described as the net result of growth on the single substrates. Activities of isocitrate lyase and malate synthase were not detected in cell-free extracts of glucose-limited cultures. However, both enzymes were present when the ethanol fraction in the reservoir medium exceeded the theoretical minimum above which the glyoxylate cycle is required for anabolic reactions. Fructose-1,6-bisphosphatase activity was only detectable at high ethanol fractions in the feed, when activity of this enzyme was required for synthesis of hexose phosphates. Phospho-enol-pyruvate-carboxykinase activity was not detectable in extracts from glucose-grown cultures and increased with the ethanol fraction in the feed. It is concluded that, during carbon-limited growth of S. cerevisiae on mixtures of glucose and ethanol, biosynthetic intermediates with three or more carbon atoms are preferentially synthesized from glucose. Synthesis of the key enzymes of gluconeogenesis and the glyoxylate cycle is adapted to the cells′ requirement for these intermediates. The gluconeogenic enzymes and their physiological antagonists (pyruvate kinase, pyruvate carboxylase and phosphofructokinase) were expressed simultaneously at high ethanol fractions in the feed. If futile cycling is prevented under these conditions, this is not primarily achieved by tight control of enzyme synthesis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: benzoic acid: Yeasts ; Crabtree effect ; respiration ; fermentation ; mitochondria ; metabolic flux ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Addition of benzoate to the medium reservoir of glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 growing at a dilution rate (D) of 0.10 h-1 resulted in a decrease in the biomass yield, and an increase in the specific oxygen uptake rate (qO2) from 2.5 to as high as 19.5 mmol g-1h-1. Above a critical concentration, the presence of benzoate led to alcoholic fermentation and a reduction in (qO2) to 13 mmol g-1h-1. The stimulatory effect of benzoate on respiration was dependent on the dilution rate: at high dilution rates respiration was not enhanced by benzoate. Cells could only gradually adapt to growth in the presence of benzoate: a pulse of benzoate given directly to the culture resulted in wash-out.As the presence of benzoate in cultures growing at low dilution rates resulted in large changes in the catabolic glucose flux, it was of interest of study the effect of benzoate on the residual glucose concentration in the fermenter as well as on the level of some selected enzymes. At D=0.10 h-1, the residual glucose concentration increased proportionally with increasing benzoate concentration. This suggests that modulation of the glucose flux mainly occurs via a change in the entracellular glucose concentration rather than by synthesis of an additional amount of carriers. Also various intracellular enzyme levels were not positively correlated with the rate of respiration. A notable exception was citrate synthase: its level increased with increasing respiration rate.Growth ofS. cerevisiae in ethanol-limited cultures in the presence of benzoate also led to very high qO2 levels of 19-21 mmol g-1h-1. During growth on glucose as well as on ethanol, the presence of benzoate coincided with an increase in the mitochondrial volume up to one quarter of the total cellular volume.Also with the Crabtree-negative yeasts Candida utilis, Kluyveromyces marxianus andHansenula polymorpha, growth in the presence of benzoate resulted in an increase in qO2 and, at high concentrations of benzoate, in aerobic fermentation. In contrast to S.Cerevisiae, the highest qO2 of these yeasts when growing at D = 0.10 h-1 in the presence of benzoate was equal to, or lower than the qO2 attainable at μmax without benzoate. Enzyme activities that were repressed by glucose in S. cerevisiae also declined in K.Marxianus when the glucose flux was increased by the presence of benzoate.The maximal aerobic fermentation rate at D = 0.10 h-1 of the Crabtree-negative yeasts at high benzoate concentrations was considerably lower than for S. cerevisiae. This is probably due to the fact that under aerobic conditions these yeasts are unable to raise the low basal pyruvate decarboxylase level: cultivation without benzoate under oxygen-limited conditions resulted in rates of alcoholic fermentation and levels of pyruvate decarboxylase comparable to those of S. cerevisiae.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...