ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 528-537 
    ISSN: 0006-3592
    Keywords: chlorobenzoic acid ; methylbenzoic acid ; genetically modified strain ; Pseudomonas sp. B13 FR1 SN45P ; batch cultivation ; chemostat ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Degradation of 3-chlorobenzoic acid (3CB), 4-chlorobenzoic acid (4CB), and 4-methylbenzoic acid (4MB) as single substrates (carbon sources) and as a substrate mixture were studied in batch and continuous culture using the genetically modified microorganism Pseudomonas sp. B13 FR1 SN45P. The strain was able to mineralize the single compounds as well as the substrate mixture completely. Conversion of the three compounds in the substrate mixture proceeded simultaneously. Maximum specific substrate conversion rates were calculated to be 0.9 g g-1 h-1 for 3 CB and 4CB and 1.1 g g-1 h-1 for 4MB. Mass balances indicated the transient accumulation of pathway intermediates during batch cultivations. Hence, the rate limiting step in the degradative pathway is not the initial microbial attack of the original substrate or its transport through the cell membrane. Degradation rates on 3CB were comparable to those of the parent strain Pseudomonas sp. B13. The stability of the degradation pathways of strain Pseudomonas sp. B13 FR1 SN45P could be demonstrated in a continuous cultivation over 3.5 months (734 generation times) on 3CB, 4MB, and 4CB, which were used as single carbon sources one after the other.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 582-585 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Deep penetration welding of polymers can be carried out at high speed with relatively low laser power. This results from an efficient coupling CO2 laser radiation to polymers that leads to volume heating. A brief review of energy coupling and heat transfer effects in polymers under CO2 laser welding conditions is given. Some examples of low power (10 to 100 watt) CO2 welding of polypropylene and polyethylene at depths of up to 1.5 cm are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...