ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 19 (1987), S. 69-81 
    ISSN: 1573-6881
    Keywords: Plasma membrane ; transmembrane electron transport ; ruthenium complexes ; cell growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E′ 0) from 305 to −42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6881
    Keywords: Plasma membrane oxidoreductase ; transferrin ; transferrin receptor ; iron transport ; cell growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Nonpermeable electron acceptors can be reduced by a transplasma membrane electron transport system in suspensions of intact cells. Here we report that diferric transferrin is reduced by HeLa S3 cells. The reduction is recorded spectrophotometrically as the formation of the ferrous complex of bathophenanthroline disulfonate. Ferric ammonium citrate can also be used as an electron acceptor, and the presence of low concentrations of diferric transferrin greatly stimulates the reduction of trivalent iron under these conditions. Likewise very low concentrations of ferricyanide, which does not give rise to a ferrous bathophenanthroline disulfonate complex formation, have a strong stimulatory effect on the complex formation when ferric ammonium citrate is the source of ferric iron. Apotransferrin is a potent inhibitor of the reaction. The inhibition occurs at the concentration necessary for complete occupancy of the transferrin receptors. The inhibition can be demonstrated also when high concentrations of ferricyanide are used as electron acceptor. The possible mechanism behind the reported phenomena is discussed, and it is concluded that the transplasma membrane electron transport system can be involved in the process of cellular iron uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...