ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • cardiomyocytes  (4)
  • 1995-1999  (4)
  • 1965-1969
  • 1
    ISSN: 1573-4919
    Schlagwort(e): nitric oxide ; endotoxin ; cardiomyocytes ; guanosine 3′, 5′-cyclic monophosphate ; calcium ; ADP-ribosylation ; phosphorylation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract To evaluate the effects of the in vivo endotoxin treatment of the rat on (1) the contractile responses in the subsequently isolated papillary muscle to adrenergic and cholinergic agonists and (2) the biochemical parameters (cyclic GMP, nitric oxide synthesis, protein phosphorylation and ADP-ribosyslation) in the subsequently isolated cardiomyocytes. Following the in vivo endotoxin treatment (4 mg/kg i.p., 18 h), contractile responses to increasing amounts of isoprenaline or to increasing amounts of oxotremorine in the presence of a fixed amount of isoprenaline were determined in isolated papillary strips. Activities of nitric oxide synthase, guanylyl cyclase, as well as phosphorylation of phospholamban and troponin-inhibitory subunit, and pertussis toxin-catalyzed and endogenous ADP-ribosylations were determined in the intact cardiomyocytes and subcellular fractions. The increase in the force of contraction by isoprenaline was reduced, while its inhibition by oxotremorine was greater in the endotoxin-treated papillary strips. The activities of both nitric oxide synthase, primarily of the inducible form of the enzyme, and cytosolic guanylyl cyclase were higher while the phosphorylations of both phospholamban and troponin-inhibitory subunit were of lesser magnitude in the cardiomyocytes following the in vivo endotoxin treatment. Pertussis toxin-catalyzed ADP-ribosylation of the 41 kDa polypeptide, which is the alpha subunit of Gi, was also decreased. The results of the present study support the postulate that alterations in both the cyclic AMP and cyclic GMP signalling cascade contribute to the myocardial dysfunction caused by endotoxin and cytokines.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-4919
    Schlagwort(e): cardiomyocytes ; desensitization ; G proteins ; adenylyl cyclase ; cross-talk ; adrenergic receptor ; adenosine receptor ; muscarinic receptor
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Chronic exposure of cells to cognate agonists has been established to cause homologous desensitization of G protein-coupled receptors. In this work, we show that exposure of adult rat eardiomyoeytes to isoproterenol (ISO) for 24 h led to the desensitization of β-adrenoceptor (β-AR) coupled adenylyl cyclase (AC) activity, which was associated with an increased inhibition of AC by M2-muscarinic receptor (MR) agonist, carbachol (Cch), and a decreased inhibition of AC by A1-adenosine receptor (AdR) agonist, N6-phenylisopropyladenosine (R-PIA). Chronic exposure of eells to Cch caused the desensitization of M2-MR-coupled AC, decreased the inhibitory action of R-PIA on AC and increased ISO-stimulated AC, while chronic exposure to R-PIA caused the desensitization of A1-AdR-coupled AC and modestly increased ISO-stimulated AC without any significant effect on Cch inhibition of the enzyme. Thus, chronic exposure ol cardiomyocytes revealed for the first time a more complex and differential nature of cross-talk among the three major G-coupled receptors in modulating AC.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-4919
    Schlagwort(e): phospho-dephosphorylation ; depolarization ; cardiomyocytes ; phospholamban ; inhibitory subunit of troponin ; autonomic regulation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Protein phosphorylation was investigated in [32P]-labeled cardiomyocytes isolated from adult rat heart ventricles. The β-adrenergic stimulation (by isoproterenol, ISO) increased the phosphorylation of inhibitory subunit of troponin (TN-I), C-protein and phospholamban (PLN). Such stimulation was largely mediated by increased adenylyl cyclase (AC) activity, increased myoplasmic cyclic AMP and increased cyclic AMP dependent protein kinase (A-kinase)-catalyzed phosphorylation of these proteins in view of the following observations: (a) dibutyryl-and bromo-derivatives of cyclic AMP mimicked the stimulatory effect of ISO on protein phosphorylation while (b) Rp-cyclic AMP was found to attenuate ISO-dependent stimulation. Unexpectedly, 8-bromo cyclic GMP was found to markedly increase TN-I and PLN phosphorylation. Both β1- and β2-adrenoceptors were present and ISO binding to either receptor was found to stimulate myocyte AC. However, the stimulation of the β2-AR only marginally increased while the stimulation of β1-AR markedly increased PLN phosphorylation. Other stimuli that increase tissue cyclic AMP levels also increased PLN and TN-I phosphorylation and these included isobutylmethylxanthine (non-specific phosphodiesterase inhibitor), milrinone (inhibits cardiotonic inhibitable phosphodiesterase, sometimes called type III or IV) and forskolin (which directly stimulates adenylyl cyclase). Cholinergic agonists acting on cardiomyocyte M2-muscarinic receptors that are coupled to AC via pertussis toxin(PT)-sensitive G proteins inhibited AC and attenuated ISO-dependent increases in PLN and TN-I phosphorylation. Thein vivo PT treatment, which ADP-ribosylated Gi-like protein(s) in the myocytes, markedly attenuated muscarinic inhibitory effect on PLN and TN-I phosphorylation on one hand and, increased the β-adrenergic stimulation, on the other. Controlled exposure of isolated myocytes to N-ethyl maleimide, also led to the findings similar to those seen following the PT treatment. Exposure of myocytes to phorbol, 12-myristate, 13-acetate (PMA) increased the protein phosphorylation, augmenting the stimulation by ISO, and such augmentation was antagonized by propranolol suggesting modulation of the β-adrenoceptor coupled AC pathway by PMA. Okadaic acid (OA) exposure of myocytes also increased protein phosphorylation with the results supporting the roles for type 1 and 2A protein phosphatases in the dephosphorylation of PLN and TN-I. Interestingly OA treatment attenuated the muscarinic inhibitory effect which was restored by subsequent brief exposure of myocytes to PMA. While the stimulation of alpha adrenoceptors exerted little effect on the phosphorylation of PLN and TN-I, inactivation of alpha adrenoceptors by chloroethylclonidine (CEC), augmented β-adrenergically stimulated phosphorylation. KCl-dependent depolarization of myocytes was observed to potentiate ISO-dependent increase in phosphorylation (incubation period 15 sec to 1 min) as well as to accelerate the time-dependent decline in this phosphorylation seen upon longer incubation. Verapamil decreased ISO-stimulated protein phosphorylation in the depolarized myocytes. Depolarization was found to have little effect on the muscarinic inhibitory action on phosphorylation. Prior treatment of myocytes with PMA, was found to augment ISO-stimulated protein phosphorylation in the depolarized myocytes. Such augmented increases were completely blocked by propranolol. Forskolin also stimulated PLN and TN-I phosphorylation. Prior exposure of myocytes to forskolin followed by incubation in the depolarized and polarized media showed that PLN was dephosphorylated more rapidly in the depolarized myocytes. The results support the view that both cyclic AMP and calcium signals cooperatively increase the rates of phosphorylation of TN-I and PLN in the depolarized cardiomyocytes during β-adrenergic stimulation. The results raise the additional possibility that the calcium signal may regulate the dephosphorylation of PLN in the depolarized cell. While muscarinic attenuation of β-adrenergic action on protein phosphorylation was mediated, in part, by decreased AC activity, and muscarinic inhibition of AC and protein phosphorylation was not detectably influenced by the depolarization, the evidence was seen that muscarinic stimulation of dephosphorylation mechanisms are intimately involved. The postulate that the simultaneous stimulation of α1-adrenoceptors inhibits β-adrenergic stimulation of PLN and TN-I phosphorylation is supported.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-4919
    Schlagwort(e): cardiomyocytes ; protein phosphorylation ; phospholamban ; inhibitory subunit of troponin ; oxygen free radicals ; hydroxyl radical
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Myocytes were isolated from rat heart ventricles and then incubated with [32P]-sodium phosphate to label intracellular ATP stores. Incubations of the [32P]-labelled cardiomyocytes with a b-adrenoceptor agonist isoproterenol (10 µM) and with a plant diterpene forskolin (100 µM) which directly stimulates adenylyl cyclase increased the phosphorylation of an inhibitory subunit of troponin (TN-I) and phospholamban (PLN). Brief exposure (1 min) of labelled myocytes to the hydroxyl radical generating system (H2O2 plus FeCl2) decreased markedly the stimulatory action of isoproterenol and forskolin on TN-I and PLN phosphorylation. Similar exposure of myocytes to 5-5′-dithiobis-nitrobenzoic acid (DTNB) a sulfhydryl oxidizing reagent exerted little inhibitory effect on the isoproterenol or forskolin stimulated TN-I and PLN phosphorylation. In contrast exposure of myocytes to low concentrations (〈 50 µM) of N-ethylmaleimide (NEM) a sulfhydryl alkylating reagent augmented the stimulatory effect of isoproterenol on TN-I and PLN phosphorylation. The results further showed that brief treatment of myocytes to H2O2 plus FeCl2 markedly decreased isoproterenol-, but not forskolin-, stimulated cyclic AMP accumulation in the myocytes. The stimulatory action of NEM on the isoproterenol-stimulated TN-I and PLN phosphorylation appeared related to greater increase in the isoproterenol-stimulated cyclic AMP accumulation in the NEM-treated cardiomyocytes. The results are consistent with the postulate that hydroxyl radical exposure of cardiomyocytes blunts the β-adrenoceptor-mediated stimulation of adenylyl cyclase leading to decreased phosphorylation of TN-I and PLN and imply that such alterations account in part the reported depressed rate of relaxation of the myocardium exposed to oxygen free radicals. (Mol Cell Biochem 175: 99–107, 1997)
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...