ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ca2+-dependent K+ channels  (1)
  • calcium-dependent K+ current  (1)
  • 1
    ISSN: 1432-1424
    Keywords: calmodulin ; Ca2+-dependent K+ channels ; ion channel regulation ; mutations ; Paramecium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Paramecium tetraurelia possesses two Ca2+-dependent K+ currents, activated upon depolarizationI K(Ca,d), or upon hyperpolarizationI K(Ca,h). The two currents are mediated by pharmacologically distinct ion channel populations. Three mutations ofP. tetraurelia affect these current.s Pantophobiac A mutations (pntA) cause calmodulin sequence defects, resulting in the loss of both Ca2+-dependent K+ currents. A second mutation, TEA-insensitive A (teaA), greatly enhancesI K(Ca,d) but has no affect onI K(Ca,h). A third mutation,restless (rst), also increasesI K(Ca,d) slightly, but its principle effect is in causing an early activation ofI K(Ca,h). Interactions between the products of these three genes were investigated by constructing three double mutants. BothteaA andrst restoreI K(Ca,d) andI K(Ca,h) in pantophobiac A1, but the phenotypes ofteaA andrst are not corrected by a second mutation. These observations may indicate a role for the gene products ofteaA andrst in regulating the activity ofI K(Ca,d) andI K(Ca,h), respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 98 (1987), S. 145-155 
    ISSN: 1432-1424
    Keywords: calcium-dependent K+ current ; mutant ; Paramecium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The membrane currents of wild typeParamecium tetraurelia and the behavioral mutantteaA were analyzed under voltage clamp. TheteaA mutant was shown to have a greatly increased outward current which was blocked completely by the combined use of internally delivered Cs+ and external TEA+. This, along with previous work (Satow, Y., Kung, C., 1976,J. Exp. Biol. 65:51–63) identified this as a K+ current. It was further found to be a calcium-activated K+ current since this increased outward K+ current cannot be elicited when the internal calcium is buffered with injected EGTA. The mutationpwB, which blocks the inward calcium current, also blocks this increased outward K+ current inteaA. This shows that this mutant current is activated by calcium through the normal depolarization-sensitive calcium channel. While tail current decay kinetic analysis showed that the apparent inactivation rates for this calcium-dependent K+ current are the same for mutant and wild type, theteaA current activates extremely rapidly. It is fully activated within 2 msec. This early activation of such a large outward current causes a characteristic reduction in the amplitude of the action potential of theteaA mutant. TheteaA mutation had no effect on any of the other electrophysiological parameters examined. The phenotype of theteaA mutant is therefore a general decrease in responsiveness to depolarizing stimuli because of a rapidly activating calcium-dependent K+ current which prematurely repolarizes the action potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...