ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nucleic acid structure, Phsyical and Biochemical Characterisation of DNA  (2)
  • bradykinin  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of experimental biology and medicine 102 (1986), S. 1022-1025 
    ISSN: 1573-8221
    Keywords: neuron ; angiotensin II ; bradykinin ; neuromodulators ; neurotransmitters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of experimental biology and medicine 88 (1979), S. 1431-1433 
    ISSN: 1573-8221
    Keywords: opiate receptors ; neurons ; sensomotor cortex ; bradykinin ; morphine ; naloxone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The effects of bradykinin, morphine, and naloxone applied by microiontophoresis on sensomotor cortical neurons were studied in waking rabbits. Bradykinin increased the discharge frequency of most neurons. Morphine inhibited unit activity. Against the background of morphine, bradykinin had no activating action. Naloxone abolished the depriming effect of morphine and restored the response of the neurons to bradykinin. It is concluded that bradykinin interacts with opiate receptors in the brain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-09
    Description: Due to the long-range nature of high-order interactions between distal components in a biomolecule, transition dynamics of tertiary structures is often too complex to profile using conventional methods. Inspired by the exploded view in mechanical drawing, here, we used laser tweezers to mechanically dissect high-order DNA structures into two constituting G-quadruplexes in the promoter of the human telomerase reverse transcriptase (hTERT) gene. Assisted with click-chemistry coupling, we sandwiched one G-quadruplex with two dsDNA handles while leaving the other unit free. Mechanical unfolding through these handles revealed transition dynamics of the targeted quadruplex in a native environment, which is named as native mechanical segmentation (NMS). Comparison between unfolding of an NMS construct and that of truncated G-quadruplex constructs revealed a quadruplex–quadruplex interaction with 2 kcal/mol stabilization energy. After mechanically targeting the two G-quadruplexes together, the same interaction was observed during the first unfolding step. The unfolding then proceeded through disrupting the weaker G-quadruplex at the 5'-end, followed by the stronger G-quadruplex at the 3'-end via various intermediates. Such a pecking order in unfolding well reflects the hierarchical nature of nucleic acid structures. With surgery-like precisions, we anticipate this NMS approach offers unprecedented perspective to decipher dynamic transitions in complex biomacromolecules.
    Keywords: Nucleic acid structure, Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-10
    Description: Structural features of nucleic acids have become an integral part of current biomedical research. Highly selective and readily performed methods with little toxicity that target guanosines in non-duplex nucleic acids are needed, which led us to search for an effective agent for guanosine sequencing. Treatment of DNA or RNA with potassium tungstate and hydrogen peroxide produced damaged guanosines in DNA or RNA sequences. The damaged guanosines in non-duplex DNA could be cleaved by hot piperidine. Similarly, damaged guanosines in non-duplex RNA could be cleaved by aniline acetate. We could identify structural features of nucleic acid using this strategy instead of dimethyl sulphate and Ribonuclease T1.
    Keywords: Nucleic acid structure, Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...