ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 291-303 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; TGF-β1 ; bone ; osteoblast differentiation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β-treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...