ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8248
    Keywords: biological control ; Botrytis aclada ; Botrytis cinerea ; cyclamen ; ecological adaptation ; hydrangea ; lily ; onion ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ulocladium atrum and Gliocladium roseum are fungal antagonists capable of suppressing sporulation of Botrytis spp. on dead plant parts. The effect of temperature (3 to 36 °C) on antagonist conidial germination and mycelial growth was assessed on agar. In addition conidial germination of U. atrum was measured on dead lily leaves. The optimum temperature of both antagonists for both conidial germination and mycelial growth was between 27 and 30 °C. U. atrum was less affected by lower temperatures than G. roseum. At optimum temperature, 50% of conidia of U. atrum and G. roseum germinated within 2.6 and 10.0 hrs, respectively. At low sub-optimal temperatures (6 °C), 50% of conidia germinated within 18 and 96 hours, respectively. In bioassays on dead onion leaves, U. atrum suppressed sporulation of B. cinerea and B. aclada at all temperatures tested (6 to 24 °C) by more than 85%. On dead cyclamen leaves, G. roseum was more efficient than U. atrum at 21 and 24 °C but, in contrast to U. atrum, showed no antagonistic activity at temperatures below 21 °C. On dead hydrangea leaves, U. atrum significantly reduced sporulation of B. cinerea at temperatures as low as 3 and 1 °C. Under Dutch growing conditions, the mean air temperature during leaf wetness periods in onion and lily fields was 15 °C with temperatures only occasionally above 20 °C. In greenhouse crops of cyclamen, the mean temperature during high humidity periods was 17 °C. It is therefore concluded that U. atrum is better adapted than G. roseum to temperatures which occur in the field, in greenhouse crops such as cyclamen, or during cold storage of plant stocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 100 (1994), S. 315-336 
    ISSN: 1573-8469
    Keywords: biological control ; Botrytis cinerea ; grey mould ; sorulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sixty isolates of saprophytic microorganisms were screened for their ability to reduce the severity of grey mould (Botrytis cinerea) infection and sporulation. Isolates of the bacteriaXanthomonas maltophilia, Bacillus pumilus, Lactobacillus sp., andPseudomonas sp. and the fungusGliocladium catenulatum reduced germination of conidia of the pathogen and controlled disease on bean and tomato plants. Their activity under growth room conditions was good, consistent, and similar to the activity of the known biocontrol agent,Trichoderma harzianum T39 (non-formulated). Although the tested isolates may for nutrients with the germinating conidia ofB. cinerea, resistance induced in the host by live or dead cells were also found to be involved. Inhibitory compounds were not detected on treated leaves. Sporulation ofB. cinerea after its establishment on leaves was also reduced by the above mentioned isolates and byPenicillium sp.,Arthrinium montagnei, Ar. phaeospermum, Sesquicillium candelabrum, Chaetomium globosum, Alternaria alternata, Ulocladium atrum, andT. viride. These sporulation-inhibiting fungi did not reduce the infection of leaves byB. cinerea. Most of these selected fungi and bacteria were capable of reducing lesion expansion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-8469
    Keywords: biological control ; Botrytis allii ; Botrytis cinerea ; leaf wetness ; onion ; plant debris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Saprophytic antagonists were evaluated for suppression of sporulation ofBotrytis allii andB. cinerea on artificially killed segments of onion leaves that were pre-inoculated with the pathogens. During incubation of the antagonisttreated leaf segments in moist chambers, periods of leaf wetness and leaf dryness were alternated to simulate conditions in the field. Interruption of humid conditions with dry periods had a differential effect on antagonists.Alternaria alternata, Chaetomium globosum, Ulocladium atrum andU. chartarum suppressed sporulation ofB. allii almost completely under continuously wet conditions, and when the leaf wetness periods were interrupted with drying periods of 9h imposed 16, 40, and 64 h after the antagonists were applied. When leaf wetness was interrupted 16 h after antagonist application, the number of conidia ofB. allii produced cm−2 leaf surface after eight days was under the detection limit of 5.2 × 103 conidia on leaves treated with these antagonists compared to 3.7 × 105 conidia on leaves that were not treated. On the other hand,Gliocladium roseum, G. catenulatum andSesquicillium candelabrum, all highly efficient under continuously wet conditions, were of low to moderate efficiency when leaf wetness periods had been interrupted 16 h after application of the antagonists. The antagonists showed the same differentiation and sensitivity to interrupted wetness periods when tested withB. cinerea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 101 (1995), S. 251-259 
    ISSN: 1573-8469
    Keywords: antagonism ; biological control ; Botrytis cinerea ; Botrytis squamosa ; Gliocladium roseum ; onion leaf spot
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study, the hypothesis was tested that removal of substrate for sporulation ofBotrytis spp. may lead to a retardation of an epidemic if the majority of the inoculum is produced inside the treated crop. Suppression of sporulation ofBotrytis spp. could be an attractive option for biological control ofBotrytis leaf spot in onions. In a field experiment, necrotic leaf tissue was removed to simulate the effect of a biocontrol agent. By this means, the amount of substrate on whichBotrytis spp. sporulates was reduced. In the experiment, the spore load above the onion plots was significantly reduced and the epidemic of onion leaf spot was retarded. At the end of the growing season, the number of leaf lesions in the green leaf area was lower in plots with substrate removal than in control plots (0.6 and 1.1 cm−2, respectively). The results demonstrated that an epidemic of onion leaf spot largely depends on the rate of inoculum production inside a crop. Thus, suppression of sporulation on necrotic leaf tissue is a valid control strategy that could be applied by using sporulation suppressing antagonists.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 104 (1998), S. 435-447 
    ISSN: 1573-8469
    Keywords: biological control ; conidial viability ; germination potential ; Lillium spp. microclimate ; necrosis ; saprophyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In 1995, conidia of Ulocladium atrum were applied to a canopy of green lily (Lillium spp.) leaves in order to investigate its survival, colonisation of artificially induced necrotic leaf tissues and competitive ability against Botrytis spp. and naturally occurring saprophytes. U. atrum conidia density cm-2 at the top and middle canopy levels was not significantly different following application of the antagonist with a propane powered backpack sprayer. In repeat experiments, conidia density on leaves at the lower canopy level was 18% to 20% of that deposited onto leaves at the top of the lily canopy. There was a significant (P 〈 0.001) linear decline of U. atrum conidia over time and after 21 days conidia density had declined by up to 73%. Germination of U. atrum on green leaves in the field reached a maximum of 81%, seven days after antagonist application. Conidial viability, measured as germination potential, declined slightly (100% to 88%) after seven days exposure to field conditions but there were no further changes in the germination potential even after 21 days of field exposure. The germination potential was not affected by canopy level. The ability of surviving U. atrum conidia to colonise necrotic tissues, artificially induced with paraquat, was measured. U. atrum colonisation was consistently highest on necrotic leaves at the top level of the canopy and consistently lower on leaves from the bottom canopy level. Necrotic leaf colonisation by U. atrum decreased over time from 51% (necrosis induced immediately after antagonist application) to 21% when necrosis was induced 21 days after antagonist application. A significant (P 〈 0.001) linear relationship (R2 = 0.713) between colonisation of necrotic tissues and conidia density prior to induction of necrosis was detected. When necrosis was induced immediately after antagonist application, U. atrum outcompeted commonly occurring saprophytic Alternaria spp. and Cladosporium spp. The ability of U. atrum to significantly reduce colonisation by Alternaria spp. was maintained for up to 21 days. Botrytis spp. did not occur in these field experiments. It was concluded that U. atrum had the ability to survive and persist in the phyllosphere for up to 21 days in the field and provided further evidence that U. atrum has the necessary survival characteristics to be a successful biological control agent of Botrytis spp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...