ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • basic fibroblast growth factor  (2)
  • 1
    ISSN: 0730-2312
    Keywords: DNA ; heparin-binding growth factors ; basic fibroblast growth factor ; carcinoma cells ; angiogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recombinant human apolipoprotein E3 (apoE), purified from E. coli, inhibited the proliferation of several cell types, including endothelial cells and tumor cells in a dose- and time-dependent manner. ApoE inhibited both de novo DNA synthesis and proliferation as assessed by an increase in cell number. Maximal inhibition of cell growth by apoE was achieved under conditions where proliferation was dependent on heparin-binding growth factors. Thus, at low serum concentrations (0-2.5%) basic fibroblast growth factor (bFGF) stimulated the proliferation of bovine aortic endothelial (BAE) cells severalfold. The bFGF-dependent proliferation was dramatically inhibited by apoE with an IC50 ≈ 50 nM. Under conditions where cell proliferation was mainly serum-dependent, apoE also suppressed growth but required higher concentrations to be effective (IC50 ≈ 500 nM). ApoE also inhibited growth of bovine corneal endothelial cells, human melanoma cells, and human breast carcinoma cells. The IC50 values obtained with these cells were generally 3-5 times higher than with BAE cells. Inhibition of cell proliferation by apoE was reversible and dependent on the time of apoE addition to the culture. In addition, apoE inhibited the chemotactic response of endothelial cells that were induced to migrate by a gradient of soluble bFGF. Inhibition of cell proliferation by apoE may be mediated both by competition for growth factor binding to proteoglycans and by an antiadhesive activity of apoE. The present results demonstrate that apoE is a potent inhibitor of proliferation of several cell types and suggest that apoE may be effective in modulating angiogenesis, tumor cell growth, and metastasis.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: chemotaxis ; extracellular matrix ; angiogenesis ; basic fibroblast growth factor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Thrombospondin is an inhibitor of angiogenesis that modulates endothelial cell adhesion, proliferation, and motility. Synthetic peptides from the second type I repeat of human thrombospondin containing the consensus sequence -Trp-Ser-Pro-Trp- and a recombinant heparin binding fragment from the amino-terminus of thrombospondin mimic several of the activities of the intact protein. The peptides and heparin-binding domain promote endothelial cell adhesion, inhibit endothelial cell chemotaxis to basic fibroblast growth factor (bFGF), and inhibit mitogenesis and proliferation of aortic and corneal endothelial cells. The peptides also inhibit heparin-dependent binding of bFGF to corneal endothelial cells. The antiproliferative activities of the peptides correlate with their ability to bind to heparin and to inhibit bFGF binding to heparin. Peptides containing amino acid substitutions that eliminate heparin-binding do not alter chemotaxis or proliferation of endothelial cells. Inhibition of proliferation by the peptide is time-dependet and reversible. Thus, the antiproliferative activities of the thrombospondin peptides and recombinant heparin-binding domain result at least in part from competition with heparin-dependent growth factors for binding to endothelial cell proteoglycans. These results suggest that both the Trp-Ser-Xaa-Trp sequences in the type I repeats and the amino-terminal domain play roles in the antiproliferative activity of thrombospondin.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...