ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 335-353 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surfacewater acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R 2=0.84). The best two-variable model (adjustedR 2=0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl− concentrations in treatment solutions had a stronger effect (p=0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p=0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of longterm cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 333-351 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surface-water acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R2 = 0.84). The best two-variable model (adjusted R2 = 0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl- concentrations in treatment solutions had a stronger effect (p = 0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p = 0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of long-term cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 116 (1999), S. 479-499 
    ISSN: 1573-2932
    Keywords: acidification ; base cations ; bromide ; forest ecosystems ; mobile anion ; soil solution ; TFA ; trifluoroacetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Experimental plots within the Hubbard Brook Experimental Forest, NH, were treated with sodium trifluoroacetate (TFA) and lithium bromide (Br), to study the impact of TFA alone and in the presence of increased anion concentrations (e.g. acid deposition) on the soil solution chemistry of a northern hardwood forest soil. Trifluoroacetate is a major atmospheric degradation product of replacement compounds of chlorofluorocarbons (CFC) and Br is widely used as a hydrologic tracer. Calculated drainage losses via soil water flow were less than 60% of inputs, added during the summer, and TFA and Br were temporarily retained in the soil until fall. The initial indication of an acid input of the treatments (HTFA, HBr) in the Bs2 horizon, which reflects stream water chemistry as well, was an increase of base cations in the soil solution, decreasing the soil's acid neutralizing capacity. Thereafter, trifluoroacetate and Br concentrations peaked after the peak in base cations, synchronous with peaks in H+ and Al concentrations. Organic anions, nitrate and chloride played the major role in accompaning base cations out of the solum. Sulfate retention at soil adsorption sites was increased by the presence of TFA and Br, reducing its role as a mobile anion of base cations in this experiment. Relative retention of anions for the whole profile of this northern hardwood forest soil was estimated by correlation analyses and input-output balances in decreasing order on an equivalant basis: SO4 〉 TFA = Br ≥ Cl 〉 NO3 〉 organic anions. Recovery from acid additions were recorded within several weeks after the treatments were stopped. Evaluating the impact of added chemical compounds to soils must be considered within the context of linkages among element cycles and pools.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...