ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8773
    Keywords: barley roots ; graminaceous plants ; immunoblotting ; iron deficiency ; 36 kDa peptide ; 2D–PAGE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In a previous paper we reported that an acidic 36 kDa peptide is the most strongly induced peptide among several peptides induced by Fe deficiency in barley roots. In this paper, polyclonal antibodies were raised against the 36 kDa peptide. This peptide appeared in the roots of all the graminaceous species tested (barley, rye, wheat, oat, maize, sorghum and rice) in response to Fe deficiency. More of the peptide was found in the roots of graminaceous species which secrete higher amounts of mugineic acids (MAs) under Fe deficient nutrition status. Induction of the 36 kDa peptide was first observed on the third day of Fe deficiency, rising to a maximum value on the seventh day. The trend has a positive correlation with secretion of MAs during Fe deficiency. Further, resupply of Fe resulted in a decrease in peptide production on the second day, reaching a control level on the seventh day. The rate of decrease in peptide production was observed to be slower than that of MA secretion. Other nutrient stresses such as B excess, B deficiency, Cu excess, Cu deficiency, Mn excess, Mn deficiency, Zn excess and Zn deficiency induced far less of the peptide. The specific expression of the 36 kDa peptide in roots of graminaceous species under Fe deficiency suggested the positive association of the peptide with a specific Fe deficiency tolerance mechanism in graminaceous plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: barley roots ; Fe-deficiency ; mugineic acid ; nicotianamine synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nicotianamine (NA), the key precursor of the mugineic acid family phytosiderophores (MAs), is synthesized from S-adenosylmethionine (SAM). The NA synthase was strongly induced by Fe-deficiency treatment, and the activity increased to the maximum level faster than the time of maximum level of MAs secretion and also before the appearance of severest chlorosis. The enzyme was mainly localized in the roots of barley. NA synthase had the optimum pH at 9.0, a molecular weight of about 40,000∼50,000 estimated by gel filtration or about 30,000 by SDS-PAGE. Using hydrophobic chromatography, hydroxylapatite chromatography, and preparative SDS-PAGE, NA synthase was purified as one band on SDS-PAGE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...