ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: Nicotiana tabacum ; Nicotiana sylvestris ; tobacco ; peroxidase ; transgenic plants ; root growth ; indoleacetic acid ; auxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic tobacco plants that overproduce the tobacco anionic peroxidase wilt upon reaching maturity, although having functional stomata and normal vascular anatomy and physiology. These plants were examined further to determine the cause for wilting, and thus better understand how the anionic peroxidase functions in plant growth and development. Shoots from young peroxidase overproducing plants were grafted onto wild-type tobacco root stock to determine if the roots could absorb and transmit sufficient water to maintain leaf turgidity. These grafted plants never wilted when grown in the greenhouse though shoot peroxidase activity remained ten-fold greater than in control plants, thus indicating that wilting is a consequence of peroxidase expression in the roots. Close examination of root systems revealed considerably less root mass in the transformed plant, primarily exhibited through a decrease in branching. At flowering, root growth rate and total root mass in transformed plants were less than 50% of control plants although shoot mass and growth rate were unchanged. This is in contrast to root growth in young seedlings where transformed plants performed equivalently to controls. Root hydraulic conductivity was measured to evaluate the effect of elevated peroxidase expression on water absorption and transport; however, no significant change in hydraulic conductivity was found in transformed plants. The consequence of anionic peroxidase overexpression on indoleacetic acid (IAA) metabolism was also examined. No significant difference in IAA levels was observed; however, root elongation in plants overexpressing peroxidase was insensitive to exogenous IAA. It can be concluded that the overexpression of the tobacco anionic peroxidase in transformed plants results in diminished root mass from fewer root branches, which contributes to the wilting phenomenon seen in these plants. Further, this developmental change in transformed plants may be a consequence of the metabolism of IAA by the anionic peroxidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...