ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-10-01
    Beschreibung: Predictive relationships for the ground motion in the Marmara region (northwestern Turkey) are parametrized after regressing three-component waveforms from regional earthquakes, in the frequency range: 0.4–15.0 Hz, and in the distance range: 10–200 km. The data set consists of 2400 three-component recordings from 462 earthquakes, recorded at 53 stations. Moment magnitudes, Mw, range between 2.5 and 7.2. The largest event for which we have waveforms available (Mw 7.2) occurred in Duzce on 1999 November 12. The aftershocks of that earthquake, together with the aftershocks of the 1999 August 17 Izmit event (Mw = 7.4), are included in the dataset. Regressions are performed, independently, on Fourier velocity spectra and on peak ground velocities, for a large number of sampling frequencies. A simple model is used to relate the logarithm of the measured ground motion to excitation, site, and propagation terms. Results obtained for peak velocities are used to define a piecewise continuous geometrical spreading function, g(r), a frequency-dependent Q(f ), and a distance-dependent duration function. The latter is used, through random vibration theory (RVT), in order to predict time-domain characteristics (i.e. peak values) of the ground motion. The complete model obtained for the peak ground motion was used to match the results of the regressions on the Fourier amplitudes. Fourier velocity spectra for the combined horizontal motion are best fit by a hinged quadrilinear geometrical spreading function for observations in the 10–200 km hypocentral distance ranges as a function of frequency: f 〈 1.0 Hz, r−1.2 for r ≤ 30 km; r−0.7 for 30 〈 r ≤ 60 km; r−1.4 for 60〈r ≤100 km; r−0.1 for r 〉100, f ≥1.0 Hz, r−1.0 for r ≤30 km; r−0.6 for 30〈r ≤ 60 km; r−0.9 for 60〈r ≤100 km; r−0.1 for r 〉100 km. The frequency-dependent crustal shearwave quality factor Q (f ) coefficient Q( f )=180 f 0.45. The T (5–75 per cent) duration window provides good agreement between observed and predicted peak values. By modelling the behaviour of the small earthquakes at high frequency, we also quantified a regional parameter κ = 0.055 s. Spectral models with one single-corner frequency (Brune), and with two-corner frequencies (Atkinson and Silva) fit the observed high-frequency excitation levels equallywell, whereas the model by Atkinson and Silva fits the low-frequency observations slightly better than Brune’s. RVT is used to predict the absolute levels of ground shaking, following Boore’s implementation of the stochastic ground motion model (Boore’s SMSIM codes). Our regional empirical predictive relationships are compared to the ones adopted in several regions of the world, from California to Western United States.
    Beschreibung: Published
    Beschreibung: 635-651
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): attenuation ; ground motion scaling ; ground motion scaling ; Turkey ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
    Beschreibung: Published
    Beschreibung: 315-333
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Attenuation ; Ground motion ; Western Alps ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: By using small-to-moderate-sized earthquakes located within ~200 km of San Francisco, we characterize the scaling of the ground motions for frequencies ranging between 0.25 and 20 Hz, obtaining results for geometric spreading, Q(f), and site parameters using the methods of Mayeda et al. (2005) and Malagnini et al. (2004). The results of the analysis show that, throughout the Bay Area, the average regional attenuation of the ground motion can be modeled with a bilinear geometric spreading function with a 30 km crossover distance, coupled to an anelastic function ! exp " #fr $Q( f ) % & ' ( ) * , where: Q(f)=180 f 0.42. A body-wave geometric spreading, g(r)= r -1.0, is used at short hypocentral distances (r 〈 30 km), whereas g(r)= r -0.6 fits the attenuation of the spectral amplitudes at hypocentral distances beyond the crossover. The frequency-dependent site effects at 12 of the Berkeley Digital Seismic Network (BDSN) stations were evaluated in an absolute sense using coda-derived source spectra. Our results show: i) the absolute site response for frequencies ranging between 0.3 Hz and 2.0 Hz correlate with independent estimates of the local magnitude residuals (dML) for each of the stations; ii) moment-magnitudes (MW) derived from our path and sitecorrected spectra are in excellent agreement with those independently derived using fullwaveform modeling as well as coda-derived source spectra; iii) we use our weak-motionbased relationships to predict motions region wide for the Loma Prieta earthquake, well above the maximum magnitude spanned by our data set, on a completely different set of stations. Results compare well with measurements taken at specific NEHRP site classes; iv) an empirical, magnitude-dependent scaling was necessary for the Brune stress parameter in order to match the large magnitude spectral accelerations and peak ground velocities with our weak-motion-based model.
    Beschreibung: Submitted
    Beschreibung: open
    Schlagwort(e): Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: manuscript
    Format: 6679919 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...