ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0646
    Keywords: anthracycline ; Pgp-MDR ; at-MDR ; analogs ; structure-activity relationships ; morpholinylanthracyclines ; MMRDX
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The objective of the experiments reported in this paper was the identification of promising anthracycline analogs on the basis of lack of cross-resistance against tumor cells presenting either P-glycoprotein multidrug resistance (Pgp-MDR) or the altered topoisomerase multidrug resistant (at-MDR) phenotype. Differently modified anthracycline analogs known to be active against MDR cells were assayedin vitro against CEM human leukemic cells, and the sublines CEM/VLB100 and CEM/VM-1 exhibiting respectively the Pgp-MDR and the at-MDR phenotype. Two classes of molecules, in which the -NH2 group in C-3′ position is substituted with a morpholino, methoxymorpholino (morpholinyl-anthracycline), or an alkylating moiety, present equivalent efficacy in the drug-sensitive and the two drug-resistant sublines. These results indicate that such molecules may exert their cytotoxic effect through a mode of action different from that of “classical” anthracyclines and is not mediated through topoisomerase II inhibition. Both molecules represent novel concepts in the field of new anthracyclines derivatives.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: anticancer drugs ; at-MDR ; cell culture ; DNA topoisomerase II ; drug resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The characteristic feature of multidrug resistance (MDR) associated with drugs that interact with DNA topoisomerase II (topo II) is alterations in topo II activity or amount (at-MDR). We have characterized the at-MDR phenotype in human leukemic CEM cells selected for resistance to the topo II inhibitor, VM-26. Compared to drug-sensitive cells, the key findings are that at-MDR cells exhibit (i) decreased topo II activity; (ii) decreased drug sensitivity, activity and amount of nuclear matrix topo II; (iii) increased ATP requirement of topo II; (iv) a single base mutation in topo II resulting in a change of Arg to Gln at position 449, at the start of the motif B/nucleotide binding site; and (v) decreased topo II phosphorylation, suggesting decreased kinase or increased phosphatase activities. Recent results using single-stranded conformational polymorphism analysis reveals the presence of a mutation in the motif B/nucleotide binding site of the topo IIα gene in CEM at-MDR cells and in another leukemic cell line selected for resistance to m-AMSA. Finally, we have observed marked changes in the nuclear distribution of topo II in cells treated with anti-topo II drugs and have also found these changes to be attenuated in drug-resistant cells. We postulate that traditional inhibitors of topo II alter the equilibrium of the strand-passing reaction such that the number of enzyme-DNA covalent complexes increases. We further suggest that when the enzyme is bound to DNA it is protected from proteolysis, thus allowing more topo II molecules to be detected. We propose that MDR associated with alterations in topo II may have clinical consequences, and our current efforts involve exploiting these biochemical and molecular observations in the development of probes that may be useful to identify such drug resistant cells in the tumors of patients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...