ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Hydrobiologia 159 (1988), S. 177-188 
    ISSN: 1573-5117
    Schlagwort(e): eutrophic lake water ; nitrogen flux ; anaerobic sediment ; simulation model
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Nitrogen flux from sediment of a shallow lake and subsequent utilization by water hyacinth (Eichhornia crassipes [Mart] Solms) present in the water column were evaluated using an outdoor microcosm sediment-water column. Sediment N was enriched with 15N to quantitatively determine the movement of NH4-N from the sediment to the overlying water column. During the first 30 days. 48% of the total N uptake by water hyacinth was derived from sediment 15NH4-N. This had decreased to 14% after 183 days. Mass balance of N indicates that about 25% sediment NH4-N was released into the overlying water, but only 17% was assimilated by water hyacinth. NH4-N levels in the water column were very low, with very little or no concentration gradients. NH4-N levels in the interstitial water of the sediment were in the range of 30–35 mg L−1 for the lower depths (〉 35 cm), while in the surface 5 cm of depth NH4-N levels decreased to 3.2 mg L−1. Simulated results also showed similar trends for the interstitial NH4-N concentration of the sediment. The overall estimated NH4-N flux from the sediment to the overlying water was 4.8 µg cm−2 day−1, and the soluble organic N flux was 5.8 µg N cm−2 day−1. Total N flux was 10.6 µg N cm−2 day−1.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...