ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 17 (1996), S. 43-54 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; binary refrigerant mixtures ; HFC-32+HFC-125 system ; PVTx properties ; thermodynamic properties ; virial coefficients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The experimental 156PVTx properties of an important binary refrigerant mixture, HFC-32 (difluoromethane)+HFC-125 (pentafluorethane), have been measured for three compositions, i.e., 50, 60, and 80 wt% HFC-32, by a constant-mass-method coupled with expansion procedure in an extensive range of temperaturesT from 320 to 440 K, of pressuresP from 1.8 to 5.3 M Pa, and of densities p from 50 to 124 kg · m−3. The experimental uncertainties of the present measurements are estimated to be within ±7 mK in temperature, ±2 kPa in pressure, ±0.2% in density and ±0.02 wt% of HFC-32. The sample purities are 99.998 wt% for HFC-32 and 99.99 wt% for HFC-125. Seventy-eight second and third virial coeflicients for temperatures from 320 to 440 K have been determined by the present measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 17 (1996), S. 587-595 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; HFC-125 ideal-gas specific heat ; second acoustic-virial coefficient ; second virial coefficient ; sound velocity ; spherical resonator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The sound velocity in gaseous pentafluoroethane (HFC-125, CF3CHF2) has been measured by means of a spherical acoustic resonator, Seventy-two sound-velocity values were measured with an uncertainty of ±0.01% at temperatures from 273 to 343 K and pressures from 101 to 250 kPa. The ideal-gas specific heats and the second acoustic-virial coefficients have been determined on the basis of the Sound-velocity measurements. The second virial coefficients calculated from the present sound-velocity measurements agree with literature values which were determined fromPVT measurements by means of a Burnett method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 911-922 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; binary R-125 + R-143a mixtures ; bubble-point pressure ; compressed-liquid density ; R-125 ; R-143a ; saturated-liquid density ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Bubble-point pressures and saturated- and compressed-liquid densities of the binary R-125 (pentafluoroethane) + R-143a (1,1,1 -trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure, density, and composition were estimated to be within ±10mK, ± 12 kPa, ±0.2%, and ±0.2mass%, respectively. The purities of the samples used throughout the measurements are 99.96 area% for R-125 and 99.94 area% for R-143a. Based on these measurements, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been represented using the Peng–Robinson equation for the bubble-point pressures, a correlation for the saturated-liquid densities, and an equation of state for the compressed-liquid densities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 1639-1651 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; equation of state ; Helmholtz energy ; R-143a ; 1,1,1-trifluoroethane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A fundamental equation of state has been developed for 1,1,1-trifluoroethane (R-143a) using the dimensionless Helmholtz energy. The experimental thermodynamic property data, which cover temperatures from the triple point (161 K) to 433 K and pressures up to 35 MPa, are used to develop the present equation. These data are represented by the present equation within their reported experimental uncertainties: ±0.1% in density for both vapor and liquid phase P–ρ–T data, ±1% in isochoric specific heat capacities, and ±0.02% in the vapor phase speed-of-sound data. The extended range of validity of the present model covers temperatures from 160 to 650 K and pressures up to 50 MPa as verified by the thermodynamic behavior of the isobaric heat-capacity values over the entire fluid phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; equation of state ; hydrofluorocarbon ; R-32 ; R-125 ; second virial coefficient ; speed of sound
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The second virial coefficients, B, for difluoromethane (R-32, CH2F2) and pentafluoroethane (R-125, CF3CHF2) are derived from speed-of-sound data measured at temperatures from 273 to 343 K with an experimental uncertainty of ±0.0072%. Equations for the second virial coefficients were established, which are valid in the extensive temperature ranges from 200 to 400 K and from 240 to 440 K for R-32 and R-125, respectively. The equations were compared with theoretically derived second virial coefficient values by Yokozeki. A truncated virial equation of state was developed using the determined equation for the virial coefficients. The virial equation of state represents our speed-of-sound data and most of the vapor PρT data measured by deVries and Tillner-Roth within ±0.01 and ±0.1%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...