ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Leaf age ; Leaf mass per area ; Nitrogen content ; Photon flux density ; Xanthium canadense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied the effects of photon flux density (PFD) and leaf position, a measure of developmental age, on the distribution of nitrogen content per unit leaf area (N area) in plants of different heights, in dense stands grown at two nitrogen availabilities and in solitary plants of the erect dicotyledonous herb Xanthium canadense. Taller more dominant plants received higher PFD levels and experienced a larger difference in relative PFD between their youngest and oldest leaves than shorter subordinate plants in the stands. Differences in PFD between leaves of solitary plants were assumed to be minimal and differences in leaf traits, found for these plants, could thus be mainly attributed to an effect of leaf position. In the solitary plants, N area decreased with leaf position while in the plants from the stands it decreased with decreasing relative PFD, indicating both factors to be important in determining the distribution of N area. Due to the effect of leaf position on N area, leaves of subordinate plants had a higher N area than older leaves of dominant plants which were at the same height or slightly higher in the canopy. Consequently, the N area distribution patterns of individual plants plotted as a function of relative PFD were steeper, and probably closer to the optimal distribution which maximizes photosynthesis, than the average distribution in the stand. Leaves of subordinate plants had a lower mass per unit area (LMA) than those of dominant plants. In the dominant plants, LMA decreased with decreasing relative PFD (and with leaf position) while in the subordinate plants it increased. This surprising result for the subordinate plants can be explained by the fact that, during the course of a growing season, these plants became increasingly shaded and newer leaves were thus formed at progressively lower light availability. This indicates that LMA was strongly determined by the relative PFD at leaf formation and to a lesser extent by the current PFD. Leaf N content per unit mass (N mass) was strongly determined by leaf position independent of relative PFD. This indicates that N mass is strongly ontogenetically related to the leaf-aging process while changes in N area, in response to PFD, were regulated through changes in LMA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 114 (1998), S. 361-367 
    ISSN: 1432-1939
    Keywords: Key words Cost of reproduction ; Optimal flowering ; Photoperiodic manipulation ; Seasonal environment ; Xanthium canadense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied the effects of a change in flowering date on the reproductive output of a short-day annual plant, Xanthium canadense. The flowering date was changed by photoperiodic manipulation to 1 month earlier or later than the natural flowering date. Plants with the natural flowering date attained the highest reproductive output. For those flowering 1 month earlier or later, the reproductive output was decreased by 42% or 23%, respectively. The reproductive output was analyzed as the product of the biomass production during the reproductive period and its allocation to the reproductive organs. Although delay in flowering increased biomass production, it decreased its fractional allocation to the reproductive organs. The highest reproductive output in the natural flowering plants resulted from a compromise between these two effects of flowering. Plants flowering earlier had higher translocation rates to the reproductive organs and accelerated plant senescence. Later flowering caused a reduction in biomass translocation to the reproductive organs and thus extended the reproductive period. These experimental results are discussed in relation to the cost of reproduction and the optimal time for flowering that maximizes the final reproductive output. It is suggested that the natural flowering time maximized the reproductive output while minimizing the cost of reproduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 95 (1993), S. 334-339 
    ISSN: 1432-1939
    Keywords: Flowering ; Germination ; Model ; Reproductive effort ; Xanthium canadense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of different dates of germination on the timing of flowering and the final reproductive yield was examined in a short-day annual plant Xanthium canadense (cocklebur). Delays in germination of 30 and 60 days deferred flower initiation by 2 and 9 days, respectively. Although plants that germinated later were smaller because of the shorter growing period, the reproductive yields did not show as much reduction as the vegetative biomass. The reproductive effort (RE, defined as the ratio of final reproductive yield to the vegetative biomass at the end of the growing season) increased 1.5 and 2.5 times with delays in germination of 30 and 60 days, respectively. A simple model of plant growth was used to analyse the factors involved in the control of RE, which depends only on the dry mass productivity and its partitioning in the reproductive phase, and is independent of the productivity and partitioning in the vegetative phase. Since relative allocation of dry mass to the reproductive part in the reproductive phase was similar for plants with different germination dates, the different REs could be ascribed mainly to differences in productivity of the vegetative parts in the reproductive period. The dependence of RE on plant size is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 55-60 
    ISSN: 1432-1939
    Keywords: Annual plant ; Nutrition ; Optimization ; Reproductive allocation ; Xanthium canadense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The effects of nutrition on the timing of reproductive initiation of a short-day annual plant Xanthium canadense (cocklebur) were examined with the following hypotheses in mind: If the plant always follows an optimal growth schedule, low-nutrient plants will initiate reproductive growth earlier than high-nutrient plants. On the other hand, if the plant flowers in response to photoperiodic stimuli, both plants will initiate reproductive growth on the same day. The sand-culture experiment showed that high-nutrient plants flowered earlier than the low-nutrient plants, leading to rejection of the first hypothesis. The predicted optimal flowering time is 2 days later than the actual flowering time in high-nutrient plants and 10 days earlier in low-nutrient plants. These deviations from the optimal times reduced the reproductive yield by 0.1% and 2.3%, respectively. The ratio of the final reproductive yield to the vegetative mass at flower initiation was 1.10 in high-nutrient plants and 0.63 in low-nutrient plants. Since the expected ratio for the optimal growth schedule is 1.0, high-nutrient plants followed the opitmal growth schedule more closely than the low-nutrient plants. Cocklebur is a fast-growing annual which is common in relatively nutrient-rich environments. This study suggests that cocklebur adapts itself to such environments through its photoperiodic response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...