ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Noble gas  (1)
  • X‐band radar  (1)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2023-01-19
    Description: Surface wave energy and dissipation are observed across the surf zone. Utilizing the concept of surface rollers, a new scaling is introduced to obtain the energy flux and dissipation related to rollers from Doppler velocities measured by a shore‐based X‐band marine radar. The dissipation of wave energy and hence the transformation of the incoming wave height (or energy) is derived using the coupled wave and roller energy balance equations. Results are compared to in‐situ wave measurements obtained from a wave rider buoy and two bottom mounted pressure wave gauges. A good performance in reproducing the significant wave height is found yielding an overall root‐mean‐square error of 0.22 m and a bias of −0.12 m. This is comparable to the skill of numerical wave models. In contrast to wave models, however, the radar observations of the wave and roller energy flux and dissipation neither require knowledge of the bathymetry nor the incident wave height. Along a 1.5 km long cross‐shore transect on a double‐barred, sandy beach in the southern North Sea, the highest dissipation rates are observed at the inner bar over a relatively short distance of less than 100 m. During the peak of a medium‐severe storm event with significant wave heights over 3 m, about 50% of the incident wave energy flux is dissipated at the outer bar.
    Description: Plain Language Summary: Ocean waves are carrying a large amount of mechanical energy which they have gained from the wind blowing over the ocean surface. At the coast this energy supply generates strong water motions, creates forces on coastal structures, moves sand, and can cause coastal erosion. It is therefore important to know when, where, and to what extent wave energy is reduced under different environmental conditions. The majority of the energy is removed by wave breaking. However, this process is still not completely understood which is partly due to fact that it is difficult to observe. This is particularly the case during storm conditions when it is very complicated to install and recover measurement equipment in the ocean. The present work describes a methodology to obtain such measurements using a special radar device which is installed at the beach; hence, it is not being impacted by harsh wave conditions. This approach will enable scientists to perform long‐term monitoring of wave breaking thus opening new opportunities to study beach processes and coastal changes.
    Description: Key Points: high‐resolution observations of surface wave and roller dissipation as well as the transformation of wave height across the surf zone. the concept of surface rollers is applied to shore‐based X‐band Doppler radar data. in storm conditions, 50% of the wave energy is dissipated at a submerged outer sandbar, but strongest dissipation occurs further inshore.
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: http://codm.hzg.de/codm
    Description: https://doi.org/10.1594/683PANGAEA.898407
    Description: https://doi.org/10.1594/PANGAEA.942014
    Description: https://doi.org/10.5281/zenodo.5787131
    Keywords: ddc:551.46 ; wave breaking ; X‐band radar ; roller concept ; close‐range remote sensing ; energy dissipation ; wave transformation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q05008, doi:10.1029/2009GC002429.
    Description: A method is presented for precisely measuring all five noble gases and their isotopic ratios in water samples using multiple programmed multistage cryogenic traps in conjunction with quadrupole mass spectrometry and magnetic sector mass spectrometry. Multiple automated cryogenic traps, including a two-stage cryotrap used for removal of water vapor, an activated charcoal cryotrap used for helium separation, and a stainless steel cryotrap used for neon, argon, krypton, and xenon separation, allow reproducible gas purification and separation. The precision of this method for gas standards is ±0.10% for He, ±0.14% for Ne, ±0.10% for Ar, ±0.14% for Kr, and ±0.17% for Xe. The precision of the isotopic ratios of the noble gases in gas standards are ±1.9‰ for 20Ne/22Ne, ±2.0‰ for 84Kr/86Kr, ±2.5‰ for 84Kr/82Kr, ±0.9‰ for 132Xe/129Xe, and ±1.3‰ for 132Xe/136Xe. The precision of this method for water samples, determined by measurement of duplicate pairs, is ±1% for He, ±0.9% for Ne, ±0.3% for Ar, ±0.3% for Kr, and ±0.2% for Xe. An attached magnetic sector mass spectrometer measures 3He/4He with precisions of ±0.1% for air standards and ±0.14% for water samples.
    Description: We are grateful for support by the National Science Foundation Chemical Oceanography program (OCE-0221247), by the Department of Defense (graduate fellowship to RHRS), and by the Woods Hole Oceanographic Institution (postdoctoral fellowship for B.B.).
    Keywords: Noble gas ; Oceanography ; Mass spectrometry ; Seawater ; Isotope ; Cryogenic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...