ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key word Crossability ; Wheat ; Rye ; Molecular markers ; QTL ; Kr genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  An intervarietal molecular-marker map was used for the detection of genomic regions influencing crossability between wheat (Triticum aestivum L. em Thell) and rye (Secale cereale L.). Analysis of deviance and logistic marker-regression methods were conducted on data from doubled haploid lines from a cross between “Courtot” and “Chinese Spring”. A major quantitative trait locus (QTL) involved in crossability, associated with the marker Xfba367-5B, was detected on the short arm of chromosome 5B. An additional locus, Xwg583-5B, was indicated on the long arm of chromosome 5B. This minor QTL might correspond to Kr1 which was presumed to be the major gene controlling crossability. Another locus of the genome, Xtam51-7A on chromosome 7A, was significantly associated with this trait. Alleles of “non-crossability” were contributed by the non-crossable cultivar “Courtot”. The three-marker model explains 65% of the difference in crossability between the two parents. The present results are discussed in relation to those previously carried out to locate the Kr genes by using the telocentric mapping technique.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Arabinoxylan ; Pentosan ; Viscosity ; QTL ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Two mapping populations were used for the analysis of the water-extractable arabinoxylans. One originated from a cross between the hexaploid cultivars ‘Courtot’ and ‘Chinese Spring’ and the other from a cross between an amphiploid (Synthetic) and cv ‘Opata’. Arabinose (Ara), and xylose (Xyl) contents were quantified for the 91 and 76 lines obtained from the two crosses, respectively. Relative viscosity (ηrel) of the wheat flour aqueous extract was evaluated by capillary viscometry. Both crosses gave similar correlation coefficients between sugar contents and relative viscosity. There were strong positive relationships between arabinose, xylose and arabinoxylan contents. The relative viscosity was strongly and positively related to the arabinoxylan content and strongly and negatively related to the Ara/Xyl ratio (arabinose content to xylose content). For one of the two crosses two measurements of relative viscosity were generated from 2 years of consecutive harvesting. As a strong correlation was observed between these two measurements, an important genotypic effect can be deduced for the relative viscosity of water-extractable arabinoxylans. QTL (quantitative trait locus) research did not reveal any chromosomal segments that were strongly implicated in variations in sugar content. However, a QTL was found for relative viscosity values and the Ara/Xyl ratio on the long arm of the 1B chromosome for the two crosses considered. This QTL explained 32–37% of the variations in relative viscosity and 35–42% of the variations in the Ara/Xyl ratio. Genes located at this QTL controlled relative viscosity through modifying the Ara/Xyl ratio. Variations in the Ara/Xyl ratio were supposedly related to differences in the molecular structure of water-extractable arabinoxylans. Minor QTLs were also obtained for relative viscosity and Ara/Xyl ratio, but the chromosomes concerned were different for the two populations evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Kernel hardness ; Wheat ; RFLP ; QTL ; Puroindoline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A molecular-marker linkage map of wheat (Triticum aestivum L. em. Thell) provides a powerful tool for identifying genomic regions influencing breadmaking quality. A variance analysis for kernel hardness was conducted using 114 recombinant inbred lines (F7) from a cross between a synthetic and a cultivated wheat. The major gene involved in kernel hardness, ha (hard), known to be on chromosome arm 5DS, was found to be closely linked with the locus Xmta9 corresponding to the gene of puroindoline-a. This locus explained around 63% of the phenotypic variability but there was no evidence that puroindoline-a is the product of Ha (soft). Four additional regions located on chromosomes 2A, 2D, 5B, and 6D were shown to have single-factor effects on hardness, while three others situated on chromosomes 5A, 6D and 7A had interaction effects. Positive alleles were contributed by both parents. A three-marker model explains about 75% of the variation for this trait.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Key words Plant height ; Molecular markers ; QTL ; Wheat ; Doubled-haploid lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Plant height in wheat (Triticum aestivum L. em Thell) is known to be under polygenic control. Crosses involving genes Rht-B1 and Rht-D1, located on chromosomes 4BS and 4DS, respectively, have shown that these genes have major effects. Two RFLP loci were found to be linked to these two genes (Xfba1-4B with Rht-B1 and Xfba211-4D with Rht-D1) by genotyping a population of F1-derived doubled-haploid lines [‘Courtot’ (Rht-B1b+Rht-D1b)בChinese Spring’]. Using a well-covered molecular marker map, we detected three additional regions and one interaction influencing plant height. These regions, located on chromosome arms 4BS (near the locus Xglk556-4B), 7AL (near the locus Xglk478-7A) and 7BL (near the locus XksuD2-7B) explained between 5% and 20% of the variability for this trait in this cross. The influence of 2 loci from chromosome 4B (Xfba1-4B and Xglk556-4B) suggests that there could be a duplication of Rht-B1 on this chromosome originating from Cv ‘Courtot’. Moreover, an interaction effect between loci from chromosome arms 1AS (near the locus Xfba393-1A) and 1BL (near the locus Xcdo1188-1B) was comparable to or even higher than those of the Rht-B1b and Rht-D1b alleles. A model including the main effects of the loci from chromosomes 4B and 4D (Xfba1-4B, Xglk556-4B and Xfba211-4D) and the interaction effect between Xfba393-1A and Xcdo1188-1B is proposed, which explains about 50% of the variation in plant height. The present results are discussed in relation to those obtained using nullisomic or substitution lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Kernel hardness ; Wheat ; RFLP ; QTL ; Puroindoline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A molecular-marker linkage map of wheat (Triticum aestivum L. em. Thell) provides a powerful tool for identifying genomic regions influencing breadmaking quality. A variance analysis for kernel hardness was conducted using 114 recombinant inbred lines (F7) from a cross between a synthetic and a cultivated wheat. The major gene involved in kernel hardness, ha (hard), known to be on chromosome arm 5DS, was found to be closely linked with the locus Xmta9 corresponding to the gene of puroindoline-a. This locus explained around 63% of the phenotypic variability but there was no evidence that puroindoline-a is the product of Ha (soft). Four additional regions located on chromosomes 2A, 2D, 5B, and 6D were shown to have single-factor effects on hardness, while three others situated on chromosomes 5A, 6D and 7A had interaction effects. Positive alleles were contributed by both parents. A three-marker model explains about 75% of the variation for this trait.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...