ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Weddell Sea  (3)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2021-10-13
    Description: The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface intensified to bottom intensified along stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, toward the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/northeastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time scales. The processes controlling the baroclinic seasonality of the flow need further investigation.
    Keywords: 551.46 ; Southern Ocean ; Weddell Sea ; Antarctic slope current ; surface stress ; flow strength ; teleconnection
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-29
    Description: The Filchner‐Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near‐freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW‐sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer‐based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two‐year travel time, and the other located in the central Filchner Trough following a ∼six year‐long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW‐derived ISW (Ronne‐mode) or more locally derived Berkner‐HSSW (Berkner‐mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW‐cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne‐ISW preconditions Berkner‐HSSW production. The negligible density difference between Berkner‐ and Ronne‐mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: Plain Language Summary: We visited the largest floating Antarctic ice shelf in the southern Weddell Sea in 2018 with an icebreaker expedition, and measured ocean temperature, salinity, meltwater content, and other parameters in front of the FRIS. We found that the ocean conditions were still dominated by the very cold and dense waters needed to protect the ice shelf from inflowing warm waters from the deep ocean. We compared the 2018 conditions with earlier surveys since the 1980s and concluded that, in spite of climate change and in contrast to other Antarctic regions, the water masses on the southern Weddell Sea shelf remained relatively stable overall. We found that most of the stations we visited near the Filchner Ice Shelf edge were dominated by cold ISW, which forms when water masses interact with the underside of the shelf ice. Our measurements helped improve our understanding regarding the currents and water masses on the southern Weddell Sea continental shelf.
    Description: Key Points: Hydrographic status update with the first comprehensive CTD survey along the entire FRIS front since 1995. Strong and stable presence of High Salinity Shelf Water in Ronne Depression over decades. Dominance of Ronne‐sourced Ice Shelf Water in Filchner Trough in 2018 points to intensified sub‐FRIS circulation.
    Description: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) http://dx.doi.org/10.13039/501100003207
    Keywords: 551.46 ; Ocean circulation ; ocean‐ice shelf interaction ; water masses ; Weddell Sea ; Filcher and Ronne shelves
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sueltenfuss, J., Osterhus, S., Stulic, L., Ryan, S., Schroeder, M., & Kanzow, T. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne Ice Shelves in the Southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), (2021): e2021JC017269, https://doi.org/10.1029/2021JC017269.
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: This study used samples and data provided by the Alfred Wegener Institute Helmholtz-Center for Polar- and Marine Research in Bremerhaven (Grant No. AWI-PS111_01). The authors thank Captain Schwarze and the crew of RV Polarstern for a very successful expedition. We acknowledge support from the EU Horizon 2020 grants 820575 (HHH, SØ) and 821001 (TK, SØ).
    Keywords: Ocean circulation ; Ocean-ice shelf interaction ; Water masses ; Weddell Sea ; Filcher and Ronne shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...