ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Tracers  (4)
  • Water mass geometry  (2)
  • Atlantic Meridional Overturning Circulation  (1)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 394-407, doi:10.1175/jpo3018.1.
    Beschreibung: The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
    Beschreibung: The first author is supported by the NOAA Postdoctoral Program in Climate and Global Change and GG by the National Ocean Partnership Program (ECCO). Author OM acknowledges support from the National Science Foundation.
    Schlagwort(e): Tracers ; Transport ; Paleoclimatology ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 31 (2016): 472–490, doi:10.1002/2015PA002917.
    Beschreibung: Compilations of paleoceanographic observations for the deep sea now contain a few hundred points along the oceanic margins, mid-ocean ridges, and bathymetric highs, where seawater conditions are indirectly recorded in the chemistry of buried benthic foraminiferal shells. Here we design an idealized experiment to test our predictive ability to reconstruct modern-day seawater properties by considering paleoceanographic-like data. We attempt to reconstruct the known, modern-day global distributions by using a state estimation method that combines a kinematic tracer transport model with observations that have paleoceanographic characteristics. When a modern-like suite of observations (Θ, practical salinity, seawater δ18O, inline image, PO4, NO3, and O2) is used from the sparse paleolocations, the state estimate is consistent with the withheld data at all depths below 1500 m, suggesting that the observational sparsity can be overcome. Physical features, such as the interbasin gradients in deep inline image and the vertical structure of Atlantic inline image, are accurately reconstructed. The state estimation method extracts useful information from the pointwise observations to infer distributions at the largest oceanic scales (at least 10,000 km horizontally and 1500 m vertically) and outperforms a standard optimal interpolation technique even though neither dynamical constraints nor constraints from surface boundary fluxes are used. When the sparse observations are more realistically restricted to the paleoceanographic proxy observations of δ13C, δ18O, and Cd/Ca, however, the large-scale property distributions are no longer recovered coherently. At least three more water mass tracers are likely needed at the core sites in order to accurately reconstruct the large-scale property distributions of the Last Glacial Maximum.
    Beschreibung: NSF Grant Numbers: 1124880, 1125422
    Beschreibung: 2016-10-08
    Schlagwort(e): Water mass geometry ; Tracer distributions ; Inverse methods ; Last Glacial Maximum ; Identical twin experiment ; Isotope records
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3225, doi:10.1029/2011PA002273.
    Beschreibung: The midpoint of the Last Termination occurred 4,000 years earlier in the deep Atlantic than the deep Pacific according to a pair of benthic foraminiferal δ18O records, seemingly implying an internal circulation shift because the lag is much longer than the deep radiocarbon age. Here a scenario where the lag is instead caused by regional surface boundary condition changes, delays due to oceanic transit timescales, and the interplay between temperature and seawater δ18O (δ18Ow) is quantified with a tracer transport model of the modern-day ocean circulation. Using an inverse method with individual Green functions for 2,806 surface sources, a time history of surface temperature and δ18Ow is reconstructed for the last 30,000 years that is consistent with the foraminiferal oxygen-isotope data, Mg/Ca-derived deep temperature, and glacial pore water records. Thus, in the case that the ocean circulation was relatively unchanged between glacial and modern times, the interbasin lag could be explained by the relatively late local glacial maximum around Antarctica where surface δ18Ow continues to rise even after the North Atlantic δ18Ow falls. The arrival of the signal of the Termination is delayed at the Pacific core site due to the destructive interference of the still-rising Antarctic signal and the falling North Atlantic signal. This scenario is only possible because the ocean is not a single conveyor belt where all waters at the Pacific core site previously passed the Atlantic core site, but instead the Pacific core site is bathed more prominently by waters with a direct Antarctic source.
    Beschreibung: G.G. is supported by NSF grant OIA-1124880 and the WHOI Arctic Research Initiative.
    Beschreibung: 2013-03-06
    Schlagwort(e): Deglaciation ; Foraminiferal data ; Inverse methods ; Numerical modeling ; Oxygen-18 ; Tracers
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 1470-1489, doi:10.1002/2014PA002743.
    Beschreibung: The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.
    Beschreibung: 2016-05-12
    Schlagwort(e): Oxygen isotopes ; Inverse modeling ; Deglaciation ; Tracers ; Ocean circulation ; Green's function
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 291–305, doi:10.1175/JPO-D-11-043.1.
    Beschreibung: A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700–1000 yr. Numerical models suggest ages twice as old. Here, the authors present an inverse framework to determine the mean age and its upper and lower bounds given Global Ocean Data Analysis Project (GLODAP) radiocarbon observations, and they show that the potential range of ages increases with the number of constituents or sources that are included in the analysis. The inversion requires decomposing the World Ocean into source waters, which is obtained here using the total matrix intercomparison (TMI) method at up to 2° × 2° horizontal resolution with 11 113 surface sources. The authors find that the North Pacific at 2500-m depth can be no younger than 1100 yr old, which is older than some previous observational estimates. Accounting for the broadness of surface regions where waters originate leads to a reservoir-age correction of almost 100 yr smaller than would be estimated with a two or three water-mass decomposition and explains some of the discrepancy with previous observational studies. A best estimate of mean age is also presented using the mixing history along circulation pathways. Subject to the caveats that inference of the mixing history would benefit from further observations and that radiocarbon cannot rule out the presence of extremely old waters from exotic sources, the deep North Pacific waters are 1200–1500 yr old, which is more in line with existing numerical model results.
    Beschreibung: GG is supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. PJH is supported by NSF Award 0960787.
    Beschreibung: 2012-08-01
    Schlagwort(e): North Pacific Ocean ; Mass fluxes/transport ; Ocean circulation ; Tracers ; Optimization ; Variational analysis
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    John Wiley & Sons
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 29 (2014): 190-209, doi:10.1002/2013PA002557.
    Beschreibung: Observations of δ13C and Cd/Ca from benthic foraminifera have been interpreted to reflect a shoaling of northern source waters by about 1000 m during the Last Glacial Maximum, with the degree of shoaling being significant enough for the water mass to be renamed Glacial North Atlantic Intermediate Water. These nutrient tracers, however, may not solely reflect changes in water mass distributions. To quantify the distribution of Glacial North Atlantic Water, we perform a glacial water mass decomposition where the sparsity of data, geometrical constraints, and nonconservative tracer effects are taken into account, and the extrapolation for the unknown water mass end-members is guided by the modern-day circulation. Under the assumption that the glacial sources of remineralized material are similar to that of the modern day, we find a steady solution consistent with 241 δ13C, 87 Cd/Ca, and 174 δ18O observations and their respective uncertainties. The water mass decomposition indicates that the core of Glacial North Atlantic Water shoals and southern source water extends in greater quantities into the abyssal North Atlantic, as previously inferred. The depth of the deep northern-southern water mass interface and the volume of North Atlantic Water, however, are not grossly different from that of the modern day. Under this scenario, the vertical structure of glacial δ13C and Cd/Ca is primarily due to the greater accumulation of nutrients in lower North Atlantic Water, which may be a signal of the hoarding of excess carbon from the atmosphere by the glacial Atlantic.
    Beschreibung: G.G. is supported by NSF grants OIA-1124880 and OCE-1301907, and the WHOI Ocean and Climate Change Institute.
    Beschreibung: 2014-09-13
    Schlagwort(e): Water mass geometry ; Tracer distributions ; Inverse methods ; Remineralization ; Last Glacial Maximum ; Circulation variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: text/plain
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umling, N. E., Oppo, D. W., Chen, P., Yu, J., Liu, Z., Yan, M., Gebbie, G., Lund, D. C., Pietro, K. R., Jin, Z. D., Huang, K., Costa, K. B., & Toledo, F. A. L. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanography and Paleoclimatology, 34(6), (2019): 990-1005, doi:10.1029/2019PA003558.
    Beschreibung: Atlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2 did not contribute significantly to deglacial subsurface warming at our sites.
    Beschreibung: We thank H. Abrams, G. Swarr, and J. Watson for technical assistance. This work was funded by the U.S. National Science Foundation grant OCE15‐558341, the Investment in Science Fund at the Woods Hole Oceanographic Institution, and an Australian Research Council Future Fellowship (FT140100993). The data are included in the supporting information and are available online (https://www.ncdc.noaa.gov/paleo/study/26530).
    Schlagwort(e): Brazil margin ; Atlantic Meridional Overturning Circulation ; deglacial ; South Atlantic temperatures ; Mg/Li ; Cd/Ca
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...