ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Patagonia-vegetation ; Root distribution ; 13C-, 18O-, D-Isotope composition ; Water ; Plant succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 70 (1986), S. 227-233 
    ISSN: 1432-1939
    Keywords: Resource sharing ; Carbohydrates ; Water ; Nitrogen ; Fragaria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The herbaceous perennial, Fragaria chiloensis, reproduces vegetatively on coastal sand dunes in California by growth of stolons that bear rosettes. Movement of water and photosynthates through stolons integrates water and carbon metabolism of rosettes both before and after they root. New, unrooted rosettes import sufficient water and nitrogen to maintain levels near those of established rosettes; yet support of an unrooted rosette did not decrease growth of a connected, rooted sibling given abundant light, water, and soil nutrients. Under such conditions strings of unrooted rosettes with the associated stolon appeared self-sufficient for carbon; shade and drought induced import of photosynthates. New rosettes produced and maintained a limited root mass upon contact with dry sand, which could increase probability of establishment. Rooting did not induce senescence of stolons. Connection between two established rosettes prevented death by drought and shade, even when neither rosette could have survived singly. Results suggest that physiological integration of connected rosettes may increase total growth of clones of F. chiloensis through sharing of resources among ramets, especially when resource availability is changeable or patchy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Serpentine ; Annuals ; Water-use ; Nitrogenuse ; Reproduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mediterranean-climate annuals growing on serpentine soils in central California differ greatly in their life spans and reproductive periods dependent on their access to soil moisture. The longer-lived annuals accumulate a greater lifetime biomass, have a higher total, but lower proportional, reproductive output, and produce leaves with a higher C/N ratios at the time of reproduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 72 (1987), S. 284-290 
    ISSN: 1432-1939
    Keywords: Annual grassland ; Serpentine ; Microelements ; Gopher mound ; Ion uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Portions of an annual serpentine grassland community in California are subject to frequent gopher mound formation. Consequently, studies were undertaken to characterize the effects of mound soils on plant growth and ion uptake. For two of the dominant annual species (Bromus mollis L. and Plantago erecta Morris), growth was reduced in gopher mound soil relative to that in inter-mound soil. A similar reduction in growth was found for plants grown in soils collected at a depth corresponding to the depth of gopher burrowing. This reduction in growth was associated with lower total P and N contents of the soil which were reflected in lower shoot contents of N and P. Additional experiments, however, showed that reduced N and P availabilities in mound soil were not entirely responsible for the growth reduction. Similarly, shoot Ca/Mg ratios were reduced in mound soil but additions of Ca improved the Ca/Mg ratio without improving growth. Growth reductions were associated with altered shoot concentrations of microelements, particularly elevated levels of Mn. A competition experiment between Plantago and Bromus showed that Bromus was more competitive than Plantago in mound and inter-mound soils and that soil type had only small affects on the nature of the interaction between the two species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Annual grassland ; Serpentine ; Nutrient addition ; Gophers ; Mulch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Application of slow release fertiliser to small (0.5x1 m) plots within a serpentine annual grassland community led to significant increases in above-ground biomass and a shift in species relative abundances. In fertilised plots the native forb species which usually dominate the grassland were almost totally replaced by grasses. In the years following initial fertiliser application, a heavy mulch formed from the previous year's grass growth allowed establishment of grass species such as Bromus mollis but significantly reduced forb establishment. Gopher disturbance of fertilised plots in the second and third years of the experiment effectively removed the grass mulch and allowed re-establishment of forb species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...