ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7687–7695, doi:10.1002/2015GL065530.
    Description: Onshore intrusions of offshore waters onto the Mid-Atlantic Bight shelf can greatly affect shelf circulation, biogeochemistry, and fisheries. Previous studies have concentrated on onshore intrusions of slope water. Here we present a direct intrusion of Gulf Stream warm-core ring water onto the shelf representing a previously unknown exchange process at the shelfbreak. Impingement of warm-core rings at the shelfbreak generates along-isobath intrusions that grow like Pinocchio's nose, extending hundreds of kilometers to the southwest. By combining satellite and Ocean Observatory Initiative Pioneer Array data and idealized numerical simulations, we discover that the intrusion results from topographically induced vorticity variation of the ring water, rather than from entrainment of the shelfbreak frontal jet. This intrusion of the Gulf Stream ring water has important biogeochemical implications and could facilitate migration of marine species across the shelfbreak barrier and transport low-nutrient surface Gulf Stream ring water to the otherwise productive shelfbreak region.
    Description: National Science Foundation Grant Number: OCE-1129125
    Keywords: Mid-Atlantic Bight ; Cross-shelf exchange ; Onshore intrusion ; Warm-core ring ; OOI Pioneer Array ; Vorticity dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017989, https://doi.org/10.1029/2021JC017989.
    Description: Gulf Stream warm-core rings (WCRs) impinging onto the Mid-Atlantic Bight (MAB) shelf edge can induce substantial water exchange between the shelf and slope seas. Combining satellite imagery and idealized ocean models, this study investigates the long-neglected influence of submarine canyons on the WCR impingement process. Satellite images show onshore intrusion of the WCR water concentrated near the MAB shelf-break canyons, indicating canyon-induced enhancement of cross-shelf exchange. Model simulations of the ring-canyon interaction qualitatively reproduce the observed pattern and show greatly enhanced vertical motions and cross-shelf transport in a canyon. The ring-induced transient flow in a canyon resolved by the model is consistent with the three-dimensional canyon circulation driven by ambient along-slope steady flows as depicted in the literature. Cross-isobath flows occur over both canyon slopes with a strong upwelling onshore flow over the slope upstream to the coastal-trapped wave propagation (the upwave slope) and a weak downwelling offshore flow over the downwave slope. To conserve potential vorticity, a subsurface-intensified cyclonic eddy is formed inside the canyon, which interacts with the sloping bottom and enhances the upwelling onshore flow over the upwave slope. The upwelled deep ring water is transported either back offshore by the ring-edge current on the upwave side of the canyon or across the canyon onto the downwave shelf forming a localized bulge pattern. While the former is an ephemeral onshore transport process, the latter represents a more sustained onshore transport of the ring water, both of which have major implication for ecosystem dynamics at the shelf edge.
    Description: XL was supported by the China Scholarship Council; ZR was supported by the National Key Research and Development Program of China (2016YFC1402000). This work was also support by the WHOI-OUC Collaborative Initiative Program.
    Description: 2022-06-13
    Keywords: Warm-core ring ; Submarine canyon ; Topographic influence ; Cross-shelf exchange ; Upwelling ; Eddy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...