ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 200-212 
    ISSN: 1573-9686
    Keywords: Aortic bifurcation ; Atherosclerosis ; Wall shear stress ; Vasoactive drugs ; Phase angle ; Abdominal aorta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The present study compares the wall shear stress (rate) distribution in a compliant aortic bifurcation model under three different hemodynamic states: normal state, angiotensin II infusion state (vasoconstrictor), and isoproterenol infusion state (vasodilator). Using a Newtonian blood analog fluid, flow wave forms corresponding to each flow state were generated in an in vitro flow loop and a photographic flow visualization technique was employed to measure wall shear rate. The results indicate a zone of low mean wall shear stress and highly oscillatory shear stress on the outer (lateral) wall of the bifurcation. In this zone, the mean wall shear stress became negative for all three hemodynamic states indicating flow separation. However, the spatial extent of the flow separation zone was not affected significantly by the flow state. The study also revealed a large spatial variation of the phase angle between the hoop strain (circumferential strain due to radial artery expansion) and the wall shear stress, the two main mechanical stimuli acting on endothelial cells which affect their biology. In the zone of low mean wall shear stress on the outer wall, the two stimuli were more out of phase relative to the mother branch, whereas they were less out of phase (by about 50°) on the inner wall (flow divider side). This phase angle was affected significantly by the flow state. For angiotensin II, the phase angle reached a maximum of 125° in the low mean shear zone while the maximum was 94° and 66° for the normal and isoproterenol states, respectively. Our observation that large phase angles between the hoop strain and wall shear stress wave forms are localized in the low shear stress region where atherosclerotic disease occurs suggests the possible physiological relevance of this phase angle to the development of atherosclerosis. © 1998 Biomedical Engineering Society. PAC98: 8745Hw
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 22 (1994), S. 371-380 
    ISSN: 1573-9686
    Keywords: Valve closure ; Tilting disc valve ; Peripheral clearance ; Instantaneous back flow ; Computational fluid dynamic analysis ; Wall shear stress ; Pressure ; Cavitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract An investigation of the flow dynamics through the peripheral clearance (the gap formed between the occluder tip and the metal housing in the closed position) of a tilting disc heart valve at the moment of valve closure is presented. A Medtronic Hall valve in the mitral position of anin vitro experimental set up is employed to measure the transient pressure pulses near the entrance (ventricular side) and exit (atrial side) of the peripheral clearance at valve closure. Flow within the peripheral clearance is analyzed employing a two-dimensional quasisteady computational fluid dynamics model with the measured peak pressures specified as the boundary conditions inducing the flow. The valve is visualized from its inflow (atrial) side using a stroboscopic lighting technique to investigate the presence of cavitation bubbles within the clearance. The pressure measurements showed that a relatively large pressure drop exists between the entrance and the exit to the clearance for about 0.5 msec at the moment of valve closure. The numerical simulation resulted in relatively large magnitudes of wall shear stress and pressure reduction within the clearance due to the flow established by the large pressure drop between the entrance and the exit. Cavitation bubbles visualized within the peripheral clearance at higher loading rates for valve closure correlated with the presence of large pressure reduction within the clearance. Analysis of the results of this study indicates that the back flow through the clearance at the instant of valve closure may contribute toward injury to formed elements in blood in spite of the short duration of the flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...