ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C00A13, doi:10.1029/2008JC005009.
    Description: The characteristics of Pacific-born storms that cause upwelling along the Beaufort Sea continental slope, the oceanographic response, and the modulation of the response due to sea ice are investigated. In fall 2002 a mooring array located near 152°W measured 11 significant upwelling events that brought warm and salty Atlantic water to shallow depths. When comparing the storms that caused these events to other Aleutian lows that did not induce upwelling, interesting trends emerged. Upwelling occurred most frequently when storms were located in a region near the eastern end of the Aleutian Island Arc and Alaskan Peninsula. Not only were these storms deep but they generally had northward-tending trajectories. While the steering flow aloft aided this northward progression, the occurrence of lee cyclogenesis due to the orography of Alaska seems to play a role as well in expanding the meridional influence of the storms. In late fall and early winter both the intensity and frequency of the upwelling diminished significantly at the array site. It is argued that the reduction in amplitude was due to the onset of heavy pack ice, while the decreased frequency was due to two different upper-level atmospheric blocking patterns inhibiting the far field influence of the storms.
    Description: The following grants provided support for this study: National Science Foundation grants OPP-0731928 (R.S.P.) and OPP-0713250 (R.S.P. and P.S.F.), Office of Naval Research grant N00014-07-1-1040 (D.J.T. and R.A.G.), Natural Sciences and Engineering Research Council of Canada (G.W.K.M.), Woods Hole Oceanographic Institution Arctic Initiative (J.Y.).
    Keywords: Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 6946–6960, doi:10.1002/2016JC011715.
    Description: Data from a shipboard hydrographic survey near 30°E in the Nansen Basin of the Arctic Ocean are used to investigate the structure and transport of the Atlantic Water boundary current. Two high-resolution synoptic crossings of the current indicate that it is roughly 30 km wide and weakly middepth-intensified. Using a previously determined definition of Atlantic Water, the transport of this water mass is calculated to be 1.6 ± 0.3 Sv, which is similar to the transport of Atlantic Water in the inner branch of the West Spitsbergen Current. At the time of the survey a small anticyclonic eddy of Atlantic Water was situated just offshore of the boundary current. The data suggest that the feature was recently detached from the boundary current, and, due to compensating effects of temperature and salinity on the thermal wind shear, the maximum swirl speed was situated below the hydrographic property core. Two other similar features were detected within our study domain, suggesting that these eddies are common and represent an effective means of fluxing warm and salty water from the boundary current into the interior. An atmospheric low-pressure system transiting south of our study area resulted in southeasterly winds prior to and during the field measurements. A comparison to hydrographic data from the Pacific Water boundary current in the Canada Basin under similar atmospheric forcing suggests that upwelling was taking place during the survey. This provides a second mechanism related to cross-stream exchange of heat and salt in this region of the Nansen Basin.
    Description: Arctic Ocean program at the FRAM-High North Research Centre for Climate and the Environment; Steven Grossman Family Foundation; National Science Foundation Grant Number: ARC-1264098
    Description: 2017-03-22
    Keywords: Atlantic Water ; Boundary current ; Nansen Basin ; Lateral exchange ; Eddy ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 152 (2018): 67-81, doi:10.1016/j.dsr2.2018.05.020.
    Description: Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.
    Description: National Science Foundation Grant PLR-1303617.
    Keywords: Ocean acidification ; Pacific Arctic ; Arctic Ocean ; East Siberian Sea ; Chukchi Sea ; Beaufort Sea ; Transport ; Arctic Rivers ; Sea Ice ; Respiration ; Upwelling ; Biological vulnerability ; Community resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 105 (2014): 17-29, doi:10.1016/j.dsr2.2014.03.017.
    Description: In the summer of 2011, an oceanographic survey carried out by the Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment (ICESCAPE) program revealed the presence of a massive phytoplankton bloom under the ice near the shelfbreak in the central Chukchi Sea. For most of the month preceding the measurements there were relatively strong easterly winds, providing upwelling favorable conditions along the shelfbreak. Analysis of similar hydrographic data from summer 2002, in which there were no persistent easterly winds, found no evidence of upwelling near the shelfbreak. A two-dimensional ocean circulation model is used to show that sufficiently strong winds can result not only in upwelling of high nutrient water from offshore onto the shelf, but it can also transport the water out of the bottom boundary layer into the surface Ekman layer at the shelf edge. The extent of upwelling is determined by the degree of overlap between the surface Ekman layer and the bottom boundary layer on the outer shelf. Once in the Ekman layer, this high nutrient water is further transported to the surface through mechanical mixing driven by the surface stress. Two model tracers, a nutrient tracer and a chlorophyll tracer, reveal distributions very similar to that observed in the data. These results suggest that the biomass maximum near the shelfbreak during the massive bloom in summer 2011 resulted from an enhanced supply of nutrients upwelled from the halocline seaward of the shelf. The decade long trend in summertime surface winds suggest that easterly winds in this region are increasing in strength and that such bloom events will become more common.
    Description: This study was supported by the National Science Foundation under Grant OCE-0959381 (MAS), and by the Ocean Biology and Biogeochemistry Program and the Cryosphere Science Program of the National Aeronautic and Space Administration under Award NNX10AF42G (RSP;KRA). GWKM was supported by the Natural Sciences and Engineering Research Council of Canada. ETB was supported by the U. S. Navy.
    Keywords: Upwelling ; Boundary currents ; Shelf-basin interaction ; Phytoplankton blooms
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8434–8454, doi:10.1002/2016JC011890.
    Description: Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.
    Description: Support for the most recent deployments of the shelfbreak moorings was provided by grants ARC-0856244 and ARC-855828 from the Office of Polar Programs of the National Science Foundation. P.L. acknowledges the financial support of the China Scholarship Council.
    Description: 2017-06-02
    Keywords: Beaufort shelfbreak jet ; Wind-driven transport ; Water masses ; Upwelling ; Cetaceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...