ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 61 (1999), S. 121-137 
    ISSN: 1432-0819
    Keywords: Key words Vulcano ; Aeolian islands ; Landslide ; Tsunami ; Finite-element technique ; Lagrangian approach ; Numerical simulations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  On 20 April 1988 a landslide of approximately 200,000 m3 occurred on the northeastern flank of the volcano La Fossa on the island of Vulcano. The landslide fell into the sea, producing a small tsunami in the bay between Punte Nere and Punta Luccia that was observed locally in the neighbouring harbour called Porto Levante. The slide occurred during a period of unrest at the volcano that was monitored very accurately. The study of this event is composed of two parts, the simulation of the landslide and the simulation of the ensuing tsunami; the former is studied by means of a Lagrangian-type numerical model in which the landslide is seen as a multibody system, an ensemble of material-deforming blocks interacting together during their motion; the latter is simulated according to the Eulerian view by solving the shallow-water approximation to Navier-Stokes equations of fluid dynamics, with the incorporation of a forcing term depending on the slide motion. Technically, the slide evolution is computed first, and this result is then used to evaluate the excitation term of the hydraulic equations and to calculate the tsunami propagation. Computed wave fronts radiate both toward the open sea, with rapid amplitude decay, and along the shore, in the form of edge waves that lose energy slowly. Comparison between model outputs and observations can be carried out only in a qualitative way owing to the absence of tide-gauge records, and results are satisfactory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-04
    Description: On December 30, 2002, following an intense period of activity of Stromboli volcano (south Tyrrhenian Sea, Italy), complex mass failures occurred on the northwest slope of the mountain which also involved the underwater portion of the volcanic edifice for a total volume of about 2–3×107 m3. Two main landslides occurred within a time separation of 7 min, and both set tsunami waves in motion that hit the coasts of Stromboli causing injuries to three people and severe damage to buildings and structures. The tsunamis also caused damage on the island of Panarea, some 20 km to the SSE from the source. They were observed all over the Aeolian archipelago, at the island of Ustica to the west, along the northern Sicily coasts to the south as well as along the Tyrrhenian coasts of Calabria to the east and in Campania to the north. This paper presents field observations that were made in the days and weeks immediately following the events. The results of the quantitative investigations undertaken in the most affected places, namely along the coasts of Stromboli and on the island of Panarea, are reported in order to highlight the dynamics of the attacking waves and their impact on the physical environment, on the coastal structures and on the coastal residential zone. In Stromboli, the tsunami waves were most violent along the northern and northeastern coastal belt between Punta Frontone and the village of Scari, with maximum runup heights of about 11 m measured on the beach of Spiaggia Longa. Measured runups were observed to decay rapidly with distance from the source, typical of tsunami waves generated by limited-area sources such as landslides.
    Description: Published
    Description: 450-461
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Tsunami ; Post-tsunami ; field-survey ; Runup heights ; Tsunami effects ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...