ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 1158-1163 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Puccinia graminis ; Aneuploid ; Cytogenetics ; Monosomics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chromosomal locations of genes for resistance to stem rust (Puccinia graminis Pers.: Pers. f. sp. tritici Eriks. & E. Henn.) in the wheat (Triticum aestivum L.) cultivar ‘Waldron’ (WDR) were determined by monosomic analyses. Wheat lines WDR-B1, -C2, -E4, and -F1,which have single genes for resistance to stem rust derived previously from WDR sel. ‘Little Club’, were crossed onto a complete set of 21 ‘Chinese Spring’ monosomics. The F2 and backcross-F1 (BC1F1) seedlings from each of the 84 crosses were tested for reaction to culture 111-SS2 (CRL-LCBB) of stem rust, and a few selected segregants were analyzed cytologically for chromosome number. The F2 from 2 crosses of WDR-C2, -E4 and -F1 and the BC1F1 from 2 crosses of WDR-F1 were tested also with culture Or11c (CRL-QBCN). Significant deviations from disomic ratios towards monosomic ratios in the F2 and BC1F1 were used to determine which chromosomes carried the genes for resistance. Cytological analyses of certain BC1F1 and susceptible F2 plants were used to help identify the location of the genes for rust resistance. WDR-B1 has a gene, herein designated Sr41, for resistance on chromosome 4D. WDR-C2 has a gene on chromosome 7 A that may be the same as one previously designated SrWld2. WDR-E4 has a gene on chromosome 2A, possibly SrWld1, which is effective against most or all North American stem rust cultures. WDR-F1 has a gene on chromosome 6B that is the same as or similar to Sr11.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 1164-1168 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Puccinia graminis ; Allelism ; Inheritance ; Segregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Triticum aestivum L. cultivar ‘Waldron’ has long lasting resistance to most North American stem rust (Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. and E. Henn.) isolates. The objective of this research was to develop wheat lines monogenic for resistance to stem rust from ‘Waldron’ using allelism tests and tests for reaction to a series of ten stem rust cultures having a range of virulences. Twelve lines homozygous for single resistance genes were selected as parents of a diallel cross to test for allelism among genes for resistance. We identified 6 lines or groups of lines (WDR-A1, the WDR-B1 and WDR-B2 group, the WDR-C1 and WDR-C2 group, WDR-D1, the WDR-E1, WDR-E2, WDR-E3, and WDR-E4 group, and WDR-F1) that carried different single genes for resistance from ‘Waldron’. A seventh line (WDR-G1) probably has two genes for resistance, one in common with WDR-C1 and WDR-C2. The gene in the WDR-E group is probably the same as SrWld1, and the one in WDR-F1 the same as Sri11. ‘Waldron’ probably has two or more genes for resistance to stem rust that previous genetic studies did not detect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5060
    Keywords: in situ hybridization ; Psathyrostachys juncea ; chromosome translocation ; translocation addition ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using the genomic in situ hybridization (GISH) technique, one translocation line, seven translocation-addition lines, five translocation plus translocation addition lines and two ditelosomic addition lines were identified in backcross progenies of Triticum aestivum L. -Psathyrostachys juncea (Fisch.) Nevski intergeneric hybrids. No complete P. juncea chromosomes were detected in the 25 lines studied. The results suggest that intact P. juncea chromosomes may be difficult to isolate in a wheat background.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5060
    Keywords: bread-wheat ; chromosome deletion ; restriction fragment length polymorphism ; RFLP ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A study was undertaken to evaluate the breeding behaviour and to identify a spontaneously produced putative chromosomal deletion in the winter wheat (Triticum aestivum L. em. Thell.) cv Norstar. Male and female transmission studies of plants heterozygous for the deletion chromosome indicated 9.5% and 48.8% transmission through the pollen and the egg, respectively. Meiotic analyses of progeny from deletion heterozygotes indicated that the deletion chromosome was eliminated from half of the plants, which agreed with the male and female transmission frequencies. Testcrosses of the deletion chromosome with telocentrics and nullisomic-tetrasomic combinations suggested that the deletion involved the long arm of chromosome 5D. This was confirmed by restriction fragment length polymorphism (RFLP) analysis. Also, monosomic plants obtained in progeny of deletion heterozygotes were shown to be monosomic for 5D. Studies of plants homozygous for the deletion showed relatively normal pairing between the deletion chromosomes, and with the short arm (5DS), but not the long arm (5DL). Deletion homozygotes were self-sterile, and morphologically similar to plants nullisomic for 5D, but plants that also contained 5DL, or a homoeologous chromosome were self-fertile and had normal morphology. Studies of chromosome morphology indicated that the deletion chromosome was metacentric, and the length of the long arm was reduced by approximately 60%. RFLP studies showed that, in terms of genetic distance, 90% of the arm was missing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5060
    Keywords: Aneuploidy ; dwarfing genes ; Triticum aestivum ; preferential transmission ; Aegilops sharonensis ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Wheat varieties tend to be chromosomally unstable producing on average 2–3% of plants with abnormal chromosome numbers. A number of semi dwarf wheat varieties, carrying the gibberellic acid insensitive dwarfing genes Rht1 or Rht2, have been seen to produce distinct tall off types due to reduction in dosage of the chromosome carrying the dwarfing gene. The UK variety ‘Brigand’, carrying Rht2 on chromosome 4D, produced very distinct tall off types when this chromosome was reduced in dosage. The frequency of tall off types was sufficiently high to cause the variety to fail United Kingdom statutory uniformity tests. An attempt to prevent the loss of chromosome 4D was made by constructing translocation chromosomes involving the short arm of chromosome 4D, which carries Rht2, and the long arm of chromosome 4S l from Aegilops sharonensis, which carries a gene(s) conferring preferential transmission. The work in this paper describes the field evaluation of two lines carrying 4DS.4DL-4S l L translocations, and demonstrates their success in preventing spontaneously occurring monosomy of chromosome 4D in semi-dwarf wheats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5060
    Keywords: alien introduction ; chromosome pairing ; fluorescent in situ hybridization ; wheat ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Fluorescent in situ hybridization (FISH) of DNA to plant chromosomes has proved to be a powerful cytogenetic tool. The value of fluorescent in situ hybridization of total genomic DNA (GISH) of related species is demonstrated in the determination of wheat/alien chromosome pairing in hybrids. Its use for assessing the relative merits of the various genes that affect chromosome pairing is also shown. The ability of GISH to identify the presence in wheat of whole alien chromosomes or alien chromosome segments is illustrated. The potential of FISH for detecting repeated DNA sequences, low copy sequences and single copy genes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5060
    Keywords: dough quality ; electrophoresis ; endosperm storage protein ; genetics ; gluten strength ; near isogenic line ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two alleles, Glu-A1r encoding high-molecular-weight (HMW) glutenin subunits 39+40 and Glu-A1s encoding HMW glutenin subunits 41+42, were introgressed to bread wheat (Triticum aestivum L.) cv. Sicco from two accessions of T. boeoticum Boiss. ssp. thaoudar (A genome species, 2n=2x=14). Alleles at Glu-A1 in current commercial bread wheats encode zero or one subunit, and alleles at the homoeoloci Glu-B1 and Glu-D1 encode a maximum of two subunits; hence the maximum number of subunits found in commercial wheats is five, whereas the lines incorporating Glu-A1r and Glu-A1s carry six. Using near-isogenic lines, the current results demonstrated that the introduction of Glu-A1r resulted in diminished dough stickiness and improved stability during mixing compared with Glu-A1a encoding subunit 1, and a small improvement in gluten strength as shown by the SDS- sedimentation test. The introduction of Glu-A1a also resulted in a small improvement in gluten strength predicted by the SDS-sedimentation test. Thus the alleles are of potential value in breeding programmes designed to improve bread-making quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...