ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-05-01
    Description: A partial amino acid sequence obtained for porcine atrial muscarinic acetylcholine receptor was used to isolate complementary DNA clones containing the complete receptor coding region. The deduced 466-amino acid polypeptide exhibits extensive structural and sequence homology with other receptors coupled to guanine nucleotide binding (G) proteins (for example, the beta-adrenergic receptor and rhodopsins); this similarity predicts a structure of seven membrane-spanning regions distinguished by the disposition of a large cytoplasmic domain. Stable transfection of the Chinese hamster ovary cell line with the atrial receptor complementary DNA leads to the binding of muscarinic antagonists in these cells with affinities characteristic of the M2 receptor subtype. The atrial muscarinic receptor is encoded by a unique gene consisting of a single coding exon and multiple, alternatively spliced 5' noncoding regions. The atrial receptor is distinct from the cerebral muscarinic receptor gene product, sharing only 38% overall amino acid homology and possessing a completely nonhomologous large cytoplasmic domain, suggesting a role for the latter region in differential effector coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peralta, E G -- Winslow, J W -- Peterson, G L -- Smith, D H -- Ashkenazi, A -- Ramachandran, J -- Schimerlik, M I -- Capon, D J -- CA16417/CA/NCI NIH HHS/ -- HL23632/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 May 1;236(4801):600-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3107123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA/genetics ; Exons ; GTP-Binding Proteins/metabolism ; Heart Atria/analysis ; Immunosorbent Techniques ; Membrane Proteins ; Molecular Weight ; Nucleic Acid Hybridization ; Peptide Fragments/metabolism ; Quinuclidinyl Benzilate/metabolism ; Receptors, Muscarinic/*genetics/metabolism ; Sequence Homology, Nucleic Acid ; Swine ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...