ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Trace metals  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 278 (2009): 67-77, doi:10.1016/j.epsl.2008.11.026.
    Description: The polar foraminifera Neogloboquadrina pachyderma (sinistral) dominates assemblages from the high latitude Southern Ocean, which is a key region for paleoclimate studies. Here, we use N. pachyderma (s.) harvested from sediment traps off the West Antarctic Peninsula to construct a seasonal time series for the calibration of calcite proxies in a high latitude seasonal sea-ice environment where temperature is decoupled from other environmental parameters. We have used a combination of δ18OCaCO3 and δ13CCaCO3 to decipher the calcification temperature and salinity, which reflect that N. pachyderma (s.) live in surface waters throughout the year, and at the ice-water interface in austral winter. Further, our results demonstrate that, during winter, the uptake of trace metals into N. pachyderma (s.) calcite is influenced by secondary environmental conditions in addition to temperature during periods of sea-ice. We suggest an elevated carbonate ion concentration at the ice-water interface resulting from biological utilisation CO2 could influence calcification in foraminifera. We demonstrate that for N. pachyderma (s.) Mg/Ca and Sr/Ca ratios are linear functions of calcification temperature and [CO32-]. N. pachyderma (s.) Mg/Ca ratios exhibit temperature sensitivity similar to previous studies (~ 10 % per °C) and a sensitivity to [CO32-] of ~ 1 % per μmol kg-1). Sr/Ca ratios are less sensitive to environmental parameters, exhibiting 〈 1% increase per °C and per 10 μmol kg-1. We show how a multi-proxy approach could be used to constrain past high latitude surface water temperature and [CO32-].
    Description: The work was funded as part of NERC Antarctic Funding Initiative AFI4-02. KRH is funded by NERC grant NER/S/A/2004/12390.
    Keywords: N. pachyderma ; Isotopes ; Trace metals ; Sea-ice ; Carbonate ion
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Estuarine, Coastal and Shelf Science 87 (2010): 103-112, doi:10.1016/j.ecss.2009.12.017.
    Description: The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005-2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contributes secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 μg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment-water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.
    Description: This project is part of AFI4‐02 and KRH was funded by NERC grant NER/S/A/2004/12390.
    Keywords: Biogeochemistry ; Nutrients (mineral) ; Trace metals ; Brines ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...